

## Civil & Structural Engineers Building Surveyors Geo-Environmentalists

# Interim Phase II Geotechnical & Environmental Assessment

at

Albert Street, Biddulph

Liverpool
1: 0151 227 3155

## **Manchester**

T: 0161 817 5180

## Wrexham

T: 01978 664071

## London

T: 020 74 584136

#### **Head Office**

18-20 Harrington Street Liverpool L2 9QA

T: **0151 227 3155** F: 0151 227 3156 E: **enquiries@sutcliffe.co.uk** 

www.sutcliffe.co.uk

Client Name: Ascent Our ref: 26357LG

Date: Jan 2013

# SUTCLIFFE INVESTIGATIONS

# Interim Geotechnical and Environmental Assessment

#### **DOCUMENT VERIFICATION**

Report Reference: I G26357 Issue Date: January 2013

| Roport Rollordinoor 2020001 |                            | locat Date: January 2010 |
|-----------------------------|----------------------------|--------------------------|
| Prepared by:                |                            |                          |
| Name:                       | D Bowen                    |                          |
| Title:                      | Environmental<br>Scientist |                          |
| Qualifications:             | BSc (Hons)                 |                          |

#### Checked / Approved by:

| Name:           | W G Baldwin                         |  |
|-----------------|-------------------------------------|--|
| Title:          | Director                            |  |
| Qualifications: | BEng (Hons) CEng<br>MIStructE AIEMA |  |

#### **Revision History:**

| Rev | Date | Description | Prepared | Checked | Approved |
|-----|------|-------------|----------|---------|----------|
|     |      |             |          |         |          |
|     |      |             |          |         |          |
|     |      |             |          |         |          |

This document has been prepared by Sutcliffe Investigations within the terms of the Contract with the Client to whom this document is addressed. Sutcliffe Investigations disclaims any responsibility to the Client and others in respect of matters outside the scope of the said contract. No person other than the Client shall rely on it in any respect and Sutcliffe Investigations shall owe no duty of care to any such third party.

## **EXECUTIVE SUMMARY**

The site is to be developed with 4 new houses along with associated parking and gardens. Based on the proposed end use, the site will be assessed against a residential with plant uptake end scenario.

| Issue          | Remarks                                                                                                                      |
|----------------|------------------------------------------------------------------------------------------------------------------------------|
| Made Ground    | Window sample logs revealed Made Ground in all Window                                                                        |
|                | Samples extending to a maximum depth of 0.70mbgl. Made                                                                       |
|                | Ground was noted in a number of layers on the site with dark                                                                 |
|                | brown gravelly SAND noted below Bituminous macadam across                                                                    |
|                | the majority of the site; the Gravel material was noted to be formed of a variety constituents ranging from clinker, brick,  |
|                | sandstone and limestone. Below this strata in WS1 & 2 firm                                                                   |
|                | fissured orangish brown sandy gravelly CLAY. Gravel is sub-                                                                  |
|                | angular fine to coarse of clinker is noted.                                                                                  |
| Natural Ground | Window sample logs revealed natural ground consisting of Firm                                                                |
|                | fissured orangish brown sandy gravelly CLAY. Gravel is sub-                                                                  |
|                | rounded to rounded fine to coarse of various lithologies. Cobbles                                                            |
|                | are sub-angular of sansdtone; over medium dense, occasionally                                                                |
|                | loose, orangish brown clayey gravelly medium and coarse                                                                      |
|                | SAND. Gravel is sub-angular to sub-rounded of various lithologies; over soft to firm greyish brown very sandy gravelly       |
|                | CLAY. Gravel is sub-angular to sub-rounded fine to coarse of                                                                 |
|                | various lithologies.                                                                                                         |
| Solid Geology  | Solid Geology was noted in any of the exploratory holes,                                                                     |
|                | however a trace of coal was noted in WS3.                                                                                    |
| 0.10           |                                                                                                                              |
| Coal Report    | The coal report states the site is not within the likely zone of                                                             |
| Asbestos       | influence from past underground workings.  6No. Asbestos samples have been taken from both the Made                          |
| ASSESTEDS      | Ground and the Natural Ground across the site. No Asbestos                                                                   |
|                | fibres have been noted in any of the samples.                                                                                |
| Contamination  | Soil                                                                                                                         |
|                | Elevated levels of contamination are noted in all four of the                                                                |
|                | samples taken from the Made Ground, with exceedences of                                                                      |
|                | >C16 to C21 aromatic, >C21 to C35 aromatic,                                                                                  |
|                | Benzo(a)antharcene, Benzo(b)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(ghi)perylene &                        |
|                | Indeono(123cd)pyrene noted.                                                                                                  |
|                | Due to only two samples being tested for TPH's no statistical                                                                |
|                | analysis was able to be undertaken on them, however due to the                                                               |
|                | results for the PAH's indicating site wide contamination for a                                                               |
|                | number of contaminants these elevated levels will be removed as                                                              |
|                | part of the proposed remedial measures. Benzo(a)antharcene,                                                                  |
|                | Benzo(b)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(ghi)perylene & Indeono(123cd)pyrene are noted to fail the |
|                | statistical test with no outliers indicating site wide contamination                                                         |
|                | within the made ground, Naphthalene is also noted to fail the                                                                |
|                | statistical test due to three samples being reported as <1.1, as                                                             |
|                | these are within the Made Ground they will be removed as part of                                                             |
|                | the remedial measures.                                                                                                       |
|                |                                                                                                                              |

| Issue                        | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13306                        | Leachates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Environmental Quality Standards (EQS) The EQS for Sulphide is 0.25ug/l; all sulphide values are above this assessment level however this is due to detection limits. The EQS assessment value is 0.02ug/l, both of the leachate samples are above the assessment criteria with a value of 0.04 in WS1 and 0.91 in WS4. The EQS assessment value is 0.03ug/l, both of the leachate samples are above the assessment criteria with a value of 3.3 in WS1 and 7.5 in WS4.                                    |
|                              | UK Drinking Water Standards (UK DWS)  All contaminants are below their associated UK DWS assessment criteria, with the exception of Benzo(a)pyrene with a value of 3.3 in WS1 and 7.5 in WS4 which are above the level of 0.01ug/l which is the UK DWS assessment level.                                                                                                                                                                                                                                  |
| Hazardous Gas                | Based on gas monitoring to date a Green classification is recommended for the site, however gas monitoring is currently on going.  A final gas risk assessment will be carried out upon completion of six ground gas monitoring reading over a period of three months.                                                                                                                                                                                                                                    |
| Geotechnical<br>Results      | Samples were taken from WS2 & WS3 for the purpose of geotechnical testing and were sent to PTS. The results of the plasticity testing show the Clay on site to be of low plasticity and of medium strength.                                                                                                                                                                                                                                                                                               |
| Foundations                  | SPT Values in the natural ground vary between the CLAY & SAND strata, the initial band of CLAY has an average N value of 16.2 with values ranging from 12-21; the SAND band has an average N value of 8 with values ranging from 3-19; the second layer of CLAY has an average N value of 26.8 with values ranging from 9-86. Due to the variability of the natural material and the nature of the sand strata it would be our recommendation that a piled foundation is implemented to competent strata. |
| Ground Floor<br>Construction | Based upon the amount of Made Ground noted on site it is not recommended that a ground-bearing slab is utilised on site. Sutcliffe Investigations therefore propose a suspended P.C Unit ground floor be adopted.  Ground gas monitoring is incomplete and based on the current readings a GREEN classification gas protection measures are noted with no remedial measures being required at this stage.  The gas reading will be complete by the end of January 2013.                                   |
| Remediation                  | Based on the soil contamination results and the statistical analysis site wide remediation will be required, this will be formed by a 600mm capping layer in the garden/landscaped area to be formed of clean tested material and a minimum of 150mm topsoil as a growing medium; the amount of material to be stripped from the site will be determined by the finished floor levels of the new development.                                                                                             |



| Issue         | Remarks                                                          |
|---------------|------------------------------------------------------------------|
| Groundwater & | Groundwater was noted in all of the exploratory holes during the |
| Excavations   | site investigation works within the sand layer, groundwater has  |
|               | been noted in WS2 during monitoring visits.                      |
|               | All exploratory holes were noted to be stable.                   |

## 1.0 INTRODUCTION

Assent Housing has appointed Sutcliffe Investigations to undertake a Phase II Geo-technical and Environmental Assessment at Albert Street, Biddulph.

The site was investigated using the Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination R & D Technical Report P5-006/TR.

The site area is  $1100\text{m}^2 \div 4$  sample positions =  $275\text{m}^2 \div 0.8 = 343.75$  $\sqrt{3}43.75\text{m}^2 = a \ 18.54\text{m}$  grid.

Therefore this gives an 80% probability of finding a circular area of interest of 343.75m<sup>2</sup>.

Window Sample holes were distributed across the site to determine the following:

- Depth of Made Ground
- Geo-technical properties of soils on site
- Extent of any contamination on site
- To install wells and to monitor for ground gas and water
- Undertake a post sampling conceptual model and risk assessment

The site is to be developed for the purpose of new houses and associated parking. Based on this end use the site will be assessed against a residential with plant uptake end use.

## 2.0 SITE INVESTIGATION

The Phase I Desk Study revealed the site was noted to be field land until 1954-1960 when garage lock-ups were built on the site. A walkover of the site for the purpose of the Desk Study indicated that the garages are still noted on site.

Site investigation works consisted of 4No. Window Samples carried out using a Dando Terrier Rig on the 6<sup>th</sup> September 2012. Samples for contamination testing purposes have been taken from all Window Sample. A site plan indicating the positions of the investigation holes can be found in Appendix A

#### Made Ground

Window sample logs revealed Made Ground in all Window Samples extending to a maximum depth of 0.70mbgl. Made Ground was noted in a number of layers on the site with dark brown gravelly SAND noted below Bituminous macadam across the majority of the site; the Gravel material was noted to be formed of a variety constituents ranging from clinker, brick, sandstone and limestone. Below this strata in WS1 & 2 firm fissured orangish brown sandy gravelly CLAY. Gravel is sub-angular fine to coarse of clinker is noted.

Detailed descriptions for each Window Sample hole can be found in Appendix B.

#### **Natural Ground**

Window sample logs revealed natural ground consisting of Firm fissured orangish brown sandy gravelly CLAY. Gravel is sub-rounded to rounded fine to coarse of various lithologies. Cobbles are sub-angular of sansdtone; over medium dense, occasionally loose, orangish brown clayey gravelly medium and coarse SAND. Gravel is sub-angular to sub-rounded of various lithologies; over soft to firm greyish brown very sandy gravelly CLAY. Gravel is sub-angular to sub-rounded fine to coarse of various lithologies.

### Solid Geology

The coal report states the site is not within the likely zone of influence from past underground workings.

2No. Ground gas and water monitoring wells have been installed and can be found in WS2 and WS3.

2No. Geo-technical tests were taken from WS2 at 1.00-2.00mbgl and WS3 at 1.00-2.00mbgl. This consisted of the following:

- Moisture Content
- Index Property
- Triaxial

4No. Contamination tests have been taken from the Made Ground and 2 No. Natural soils from across the site as a whole.

#### **LEACHATE**

2No. leachate tests have been taken from the Made Ground.

#### **Environmental Quality Standards (EQS)**

The EQS for Sulphide is 0.25ug/l; all sulphide values are above this assessment level however this is due to detection limits.

The EQS assessment value is 0.02ug/l, both of the leachate samples are above the assessment criteria with a value of 0.04 in WS1 and 0.91 in WS4.

The EQS assessment value is 0.03ug/l, both of the leachate samples are above the assessment criteria with a value of 3.3 in WS1 and 7.5 in WS4.

#### **UK Drinking Water Standards (UK DWS)**

All contaminants are below their associated UK DWS assessment criteria, with the exception of Benzo(a)pyrene with a value of 3.3 in WS1 and 7.5 in WS4 which are above the level of 0.01ug/l which is the UK DWS assessment level.



+

Groundwater was noted in all of the exploratory holes during the site investigation works within the sand layer, groundwater has been noted in WS2 during monitoring visits.

#### **GEO-TECHNICAL TESTING** 3.0

Samples were taken to PTS laboratory for geo-technical testing. Geotechnical test results are currently awaited.

#### Soluble Sulphate and pH

The highest water-soluble sulphate concentration and the lowest pH value for each soil type are shown below:

#### Soluble Sulphate and pH Classification

| Soil Type      | Lowest pH Value | Highest Soluble Sulphate Concentration (g/l) |  |  |
|----------------|-----------------|----------------------------------------------|--|--|
| Made Ground    | 7               | 0.69                                         |  |  |
| Natural Ground | 6.8             | 0.13                                         |  |  |

Based on the above and in accordance with the guidelines given in BRE: Special Digest (2005) for sub-surface concrete, the Digest Sulphate Class for the Made Ground can be given as DS-2, with an ACEC classification of AC-1s.

Based on the above and in accordance with the guidelines given in BRE: Special Digest (2005) for sub-surface concrete, the Digest Sulphate Class for the Natural Ground can be given as DS-1, with an ACEC classification of AC-1s.

#### **Geo-technical Solutions Design Parameters**

Geo-technical Solution Design Parameters are provided for guidance only and to assist in discussion in the following section. The Structural Engineer is responsible for determining appropriate temporary and permanent works design parameters to suit.



#### **Made Ground**

The nature and compaction characteristics of the Made Ground across the site are likely to be variable leading to a lack of predictability of its properties. Made Ground would be an unsuitable medium for foundation support.

Note: Existing garages are still noted on site.

#### Groundwater

Groundwater was noted in all of the exploratory holes during the site investigation works within the sand layer, groundwater has been noted in WS2 during monitoring visits.

## 4.0 FOUNDATIONS

SPT Values in the natural ground vary between the CLAY & SAND strata, the initial band of CLAY has an average N value of 16.2 with values ranging from 12-21; the SAND band has an average N value of 8 with values ranging from 3-19; the second layer of CLAY has an average N value of 26.8 with values ranging from 9-86. Due to the variability of the natural material and the nature of the sand strata it would be our recommendation that a piled foundation is implemented to competent strata.

## 5.0 GROUND FLOOR CONSTRUCTION

Based upon the amount of Made Ground noted on site it is not recommended that a ground-bearing slab is utilised on site. Sutcliffe Investigations therefore propose a suspended P.C Unit ground floor be adopted.

Ground gas monitoring is incomplete and based on the current readings a GREEN classification gas protection measures are noted with no remedial measures being required at this stage.

The gas reading will be complete by the end of January 2013.

## 6.0 GAS MONITORING

Gas monitoring wells were installed within two of the window samples across the site WS2 and WS3. To date four gas readings have been undertaken. A copy of all gas monitoring readings and water levels to date can be found in Appendix C.

| Window<br>Sample | Visit No                | 1<br>18/10/12 | 2<br>02/11/12 | 3<br>16/11/12 | 4<br>06/12/12 | 5 | 6 |
|------------------|-------------------------|---------------|---------------|---------------|---------------|---|---|
| WS2              | Methane %               | 0.1           | 0.1           | 0.1           | 0.1           |   |   |
|                  | CO <sub>2</sub> %       | 0.6           | 0.5           | 1.7           | 1.6           |   |   |
|                  | O <sub>2</sub> %        | 20.1          | 20.5          | 19.6          | 20.7          |   |   |
|                  | Atmospheric<br>Pressure | 974mb<br>(R)  | 961mb<br>(R)  | 991mb<br>(S)  | 989mb<br>(S)  |   |   |
|                  | Flow Rate               | +0.1          | +0.1          | 0.1           | 0.0           |   |   |
| WS3              | Methane %               | 0.1           | 0.1           | 0.1           | 0.1           |   |   |
|                  | CO <sub>2</sub> %       | 0.3           | 0.4           | 0.4           | 0.5           |   |   |
|                  | O <sub>2</sub> %        | 20.6          | 20.6          | 21.1          | 21.0          |   |   |
|                  | Atmospheric<br>Pressure | 974mb<br>(R)  | 961mb<br>(R)  | 991mb<br>(S)  | 989mb<br>(S)  |   |   |
|                  | Flow Rate               | +0.1          | +0.1          | 0.0           | 0.0           |   |   |

(S) Steady (F) Falling (R) Rising

It is recommended in CIRIA C665 that to provide a suitable risk assessment for ground gas, readings with atmospheric pressures of less than 1000mb and falling are required. The lowest atmospheric pressure to date is 961mb however gas monitoring is still on going.

CIRIA C665 – Assessing risks posed by hazardous ground gases to buildings the NHBC Traffic light system has been used to determine the gas characterisation for the site.

The site is to be developed for the purpose of new housing with associated car parking. To date the soil gas investigation has identified a maximum methane concentration of 0.1 per cent and a worst case flow rate of 0.1l/hr. The GSV will be calculated as:

Limiting volume flow rate of gas = gas concentration x measured borehole flow rate

GSV= 0.001 x 0.1 (gas concentration in table is %)

GSV= 0.0001

The soil gas investigation has identified a maximum Carbon Dioxide concentration of 1.7 per cent carbon dioxide and a worst case flow rate of 0.1l/hr. The GSV will be calculated as:

Limiting volume flow rate of gas = gas concentration x measured borehole flow rate

GSV= 0.017 x 0.1 (gas concentration in table is %)

GSV= 0.0017

Based on the above Methane and Carbon Dioxide readings, the GSV's would currently classify the site as green however ground gas monitoring is still on going.

A final gas risk assessment will be carried out upon completion of six ground gas monitoring reading over a period of three months.

## 7.0 CONTAMINATION

#### **MADE GROUND**

Elevated levels of contamination are noted in all four of the samples taken from the Made Ground, with exceedences of >C16 to C21 aromatic, >C21 to C35 aromatic, Benzo(a)antharcene, Benzo(b)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(ghi)perylene & Indeono(123cd)pyrene noted.

Due to only two samples being tested for TPH's no statistical analysis was able to be undertaken on them, however due to the results for the PAH's indicating site wide contamination for a number of contaminants these elevated levels will be removed as part of the proposed remedial measures. Benzo(a)antharcene, Benzo(b)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(ghi)perylene & Indeono(123cd)pyrene are noted to fail the statistical test with no outliers indicating site wide contamination within the made ground, Naphthalene is also noted to fail the statistical test due to three samples being reported as <1.1, as these are within the Made Ground they will be removed as part of the remedial measures.

## NATURAL GROUND

Two samples from the Natural Ground was analysed for contaminant parameters, the samples did not contain any contaminants which could be classified as elevated above the Generic Assessment Criteria (GAC).

#### **ASBESTOS**

6No. Asbestos samples have been taken from both the Made Ground and the Natural Ground across the site. No Asbestos fibres have been noted in any of the samples.

A copy of the contamination results, are included in Appendix D and the statistical analysis report can be found in Appendix E.

## 8.0 LEACHATES

Leachate analysis was carried out on the following samples:

- WS1 at 0.40m
- WS4 at 0.30m

#### **Environmental Quality Standards (EQS)**

The EQS for Sulphide is 0.25ug/l; all sulphide values are above this assessment level however this is due to detection limits.

The EQS assessment value is 0.02ug/l, both of the leachate samples are above the assessment criteria with a value of 0.04 in WS1 and 0.91 in WS4.

The EQS assessment value is 0.03ug/l, both of the leachate samples are above the assessment criteria with a value of 3.3 in WS1 and 7.5 in WS4.

#### **UK Drinking Water Standards (UK DWS)**

All contaminants are below their associated UK DWS assessment criteria, with the exception of Benzo(a)pyrene with a value of 3.3 in WS1 and 7.5 in WS4 which are above the level of 0.01ug/l which is the UK DWS assessment level

A copy of the leachate results can be found in Appendix D.

## 9.0 CONCLUSIONS

#### 9.1 Foundations

SPT Values in the natural ground vary between the CLAY & SAND strata, the initial band of CLAY has an average N value of 16.2 with values ranging from 12-21; the SAND band has an average N value of 8 with values ranging from 3-19; the second layer of CLAY has an average N value of 26.8 with values ranging from 9-86. Due to the variability of the natural material and the nature of the sand strata it would be our recommendation that a piled foundation is implemented to competent strata.

#### 9.2 Ground Floor Construction

Based upon the amount of Made Ground noted on site it is not recommended that a ground-bearing slab is utilised on site. Sutcliffe Investigations therefore propose a suspended P.C Unit ground floor be adopted.

Ground gas monitoring is incomplete and based on the current readings a GREEN classification gas protection measures are noted with no remedial measures being required at this stage.

The gas reading will be complete end January 2013.

#### 9.3 Contamination

Due to only two samples being tested for TPH's no statistical analysis was able to be undertaken on them, however due to the results for the PAH's indicating site wide contamination for a number of contaminants these elevated levels will be removed as part of the proposed remedial measures. Benzo(a)antharcene, Benzo(b)fluoranthene, Benzo(a)pyrene, Dibenzo(ah)anthracene, Benzo(ghi)perylene & Indeono(123cd)pyrene are noted to fail the statistical test with no outliers indicating site wide contamination within the made ground, Naphthalene is also noted to fail the statistical test due to three samples being reported as <1.1, as these are

within the Made Ground they will be removed as part of the remedial measures.

#### 9.4 Ground Gas

Based on gas monitoring to date a Green classification is recommended for the site, however gas monitoring is currently on going.

A final gas risk assessment will be carried out upon completion of six ground gas monitoring reading over a period of three months expected January 2013.

It should be noted that Sutcliffe investigations have used reasonable skill, care and diligence in the design of the investigation of this site. The inherent infinite variation of ground conditions allows only definition of the actual conditions at the location and depth of exploratory holes, while those at intermediate locations can only be inferred. This site has not been checked

\*\*\*\*\*\*\*\*\*\*

for Japanese Knotweed or other detrimental plants.

Prepared by:

Date: 01.02.13

D Bowen BSc (Hons)

Reviewed by:

Date: 01.02.13

W G Baldwin BEng (Hons) CEng MIStructE AIEMA Director



**APPENDIX A - DRAWINGS** 



DO NOT SCALE OFF THIS DRAWING

GENERAL NOTES

This drawing to read in conjunction with all relevant structural and architectural drawings and specifications.

All dimensions to be checked on site by the contractor / fabricator prior to commencement of works.

All dimensions are in millimetres unless stated otherwise.

All works to be carried out in strict accordance with the engineer's specifications, relevant British Standards and where applicable Local Authorities requirements.

For final setting out information relating to grid lines and wall positions refer to the architect's drawings.



#### NOT WORKING DRAWING



**ASCENT** 

ALBERT STREET

BIDDULPH STAFFORDSHIRE

SITE INVESTIGATION PLAN ON TOPOGRAPHICAL SURVEY

| Scale at A3 | 1:250    | Drawing number         |
|-------------|----------|------------------------|
| Drawn by    | D.BOWEN  | 26357 <del>-</del> 700 |
| Date        | 30.01.13 | Revision suffix A      |



DO NOT SCALE OFF THIS DRAWING

GENERAL NOTES

This drawing to read in conjunction with all relevant structural and architectural drawings and specifications.

All dimensions to be checked on site by the contractor / fabricator prior to commencement of works.

All dimensions are in millimetres unless stated otherwise.

All works to be carried out in strict accordance with the engineer's specifications, relevant British Standards and where applicable Local Authorities requirements.

For final setting out information relating to grid lines and wall positions refer to the architect's drawings.

A 30.01.13 WGB SI PLAN ON PROPOSED
Rev Date Checked Description

NOT WORKING DRAWING



ASCENT

ALBERT STREET BIDDULPH STAFFORDSHIRE

)rawing title

SITE INVESTIGATION PLAN ON PROPOSED PLAN

| Scale at A3 | 1:250    | Drawing number  |     |
|-------------|----------|-----------------|-----|
| Drawn by    | D.BOWEN  | 26357-          | 701 |
| Date        | 30.01.13 | Revision suffix | Α   |

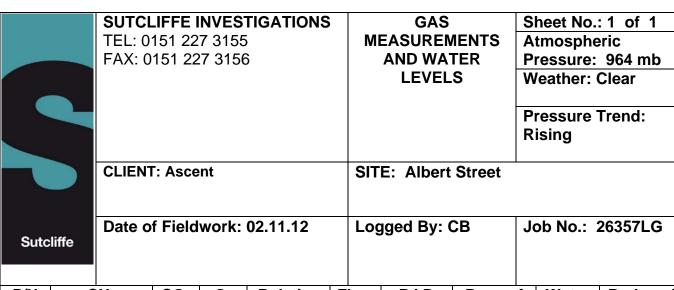
**APPENDIX B - WINDOW SAMPLE HOLE LOGS** 

| S Sı                                                                                                                                              | utcliffe I                                                                                                                                                                                      | nve                   | estigations                                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                    | Site Albert Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number<br>WS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Excavation Dando Terrie                                                                                                                           |                                                                                                                                                                                                 |                       |                                                                                                                                                                                                                                      |                | <b>Level (mOD)</b><br>79.00                                                                                                                                                                                                        | Client<br>Ascent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job<br>Number<br>26357LG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                   |                                                                                                                                                                                                 |                       |                                                                                                                                                                                                                                      | Dates<br>06    | /09/2012                                                                                                                                                                                                                           | <b>Engineer</b> GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sheet<br>1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Depth<br>(m)                                                                                                                                      | Sample / Tests                                                                                                                                                                                  | Water<br>Depth<br>(m) | Field Records                                                                                                                                                                                                                        | Level<br>(mOD) | Depth<br>(m)<br>(Thickness)                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Legend set with the set of the se |
| 0.40-0.40  1.00-1.00 1.00-1.45 1.20 1.40 1.80 1.90 2.00-2.45 2.30 2.60 2.80 2.90 3.00-3.45 3.50 3.70 3.90 4.00-4.45 4.40 4.60 4.80 4.90 5.00-5.45 | S1  N2 SPT N=21 CU 21kPa CU 12kPa CU 12kPa CU 102kPa CU 72kPa  SPT N=12 CU 42kPa CU 42kPa CU 90kPa SPT N=15  CU 54kPa CU 42kPa CU 61kPa SPT N=21 CU 59kPa CU 112kPa CU 112kPa CU 77kPa SPT N=26 |                       | P.I.D 0.0 1,4/4,4,6,7 Very sandy CLAY giving low Shear Vane values to 1.60m bgl 1,1/1,3,3,5 minor(1) at 2.60m. 1,2/4,2,4,5  4,4/3,5,5,8 Very brittle CLAY is breaking before completion of Shear Vane test to 5.00m bgl. 3,4/4,6,7,9 | 173.55         | (0.05)<br>(0.45)<br>(0.45)<br>(0.20)<br>(0.20)<br>(0.20)<br>(0.20)<br>(0.20)<br>(0.20)<br>(0.30)<br>(1.50)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30)<br>(0.30) | Bituminous macadam.  MADE GROUND comprising dark brown gravelly SAND with half bricks and cobble sized sub angular fragments of clinker. Gravel is sub angular fine to coarse of brick and clinker.  MADE GROUND comprising firm fissured orangish brown sandy gravelly CLAY. Gravel is sub angular fine to coarse of clinker.  Firm fissured orangish brown very sandy gravelly slightly cobbly CLAY. Gravel is sub rounded to rounded fine to coarse of various lithologies. Cobbles are sub angular of sandstone.  Medium dense orangish brown clayey gravelly medium and coarse SAND. Gravel is sub angular to sub rounded of various lithologies.  Firm greyish brown very sandy gravelly CLAY. Gravel is sub angular to sub rounded fine to coarse of various lithologies.  SAND band 3.30m bgl - 3.40m bgl.  Strata becomes stiff. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remarks<br>Window San                                                                                                                             | nple hole terminated                                                                                                                                                                            | at 5.45m              | bgl after SPT in firm CLAY.                                                                                                                                                                                                          |                |                                                                                                                                                                                                                                    | Scale (approx)  1:50  Figure I 2635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Excavation                                                                                                                   | Method                                                                                                                             | Dimens                | ions                                                                                                                                  | Ground           | Level (mOD)                                                                                                        | Client                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | J     | ob                |    |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|-------------------|----|
| Dando Terrie                                                                                                                 | er Rig.                                                                                                                            |                       |                                                                                                                                       | 1                | 78.75                                                                                                              | Ascent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 1     | lumbe<br>6357L    |    |
|                                                                                                                              |                                                                                                                                    | Locatio               | n                                                                                                                                     | Dates            | /09/2012                                                                                                           | Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | s     | heet              |    |
|                                                                                                                              |                                                                                                                                    | Se                    | e Location Plan.                                                                                                                      |                  | ,00,2012                                                                                                           | GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |       | 1/1               |    |
| Depth<br>(m)                                                                                                                 | Sample / Tests                                                                                                                     | Water<br>Depth<br>(m) | Field Records                                                                                                                         | Level<br>(mOD)   | Depth<br>(m)<br>(Thickness)                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Legeno                       | Water | Inst              | tr |
| 0.40-0.40 0.90 1.00-1.45 1.00-2.00 1.10-1.10 2.00-2.45 2.50 2.70 2.90 3.00-3.45 3.70 3.90 4.00-4.45 4.50 4.70 4.90 5.00-5.45 | S1  CU 54kPa  SPT N=13 G3 N2  SPT N=4  CU 29kPa CU 77kPa CU 56kPa  SPT N=9  CU 62kPa CU 55kPa SPT N=21  CU 41kPa CU 53kPa SPT N=21 |                       | P.I.D 0.0  0,2/2,3,4,4 P.I.D 0.0  0,0/1,1,1,1 minor seepage(1) at 2.10m.  No recovery 3.00m bgl - 3.50m bgl, 2,2/1,2,3,3  3,3/4,4,6,7 | 174.35<br>173.30 | (0.05)<br>0.05<br>0.045)<br>0.50<br>(0.20)<br>0.70<br>1.80<br>(0.40)<br>1.80<br>(0.40)<br>2.20<br>(2.20)<br>(1.05) | Bituminous macadam.  MADE GROUND comprising dark brown gravelly SAND with angular boulders of clinker and sandstone block. Gravel is sub angular fine to coarse of brick and clinker.  MADE GROUND comprising firm fissured orangist brown sandy gravelly CLAY. Gravel is sub angular fine to coarse of clinker.  Firm fissured orangish brown very sandy gravelly slightly cobbly CLAY. Gravel is sub rounded to rounded fine to coarse of various lithologies.  Cobbles are sub angular of sandstone.  Medium dense orangish brown clayey gravelly medium and coarse SAND. Gravel is sub angular to sub rounded of various lithologies.  Firm fissured orangish brown very sandy gravelly slightly cobbly CLAY. Gravel is sub rounded to rounded fine to coarse of various lithologies.  Cobbles are sub angular of sandstone. |                              | Σ1    |                   |    |
| <b>Remarks</b><br>Window San                                                                                                 | nple hole terminated                                                                                                               | at 5.45m              | bgl after SPT in firm CLAY.                                                                                                           |                  | =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Scale (approx) 1:50 Figure I |       | ogged<br>By<br>GF | d  |

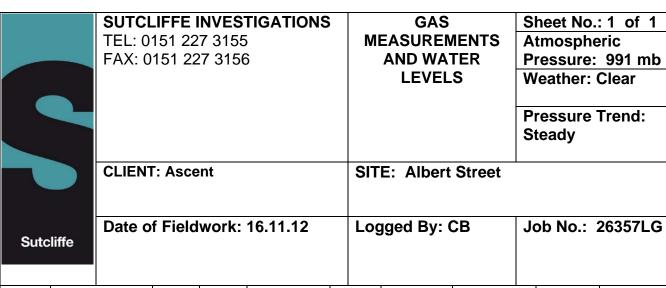
| S Sı                                                                                                                                                 | utcliffe I                                                                                                                                        | nve                   | estigations                                                                                                                                            |                                      |                                                                                    | Site Albert Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |            | umber<br>WS3            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|-------------------------|
| Excavation Dando Terrie                                                                                                                              |                                                                                                                                                   | Dimens                | sions                                                                                                                                                  |                                      | <b>Level (mOD)</b><br>178.62                                                       | Client<br>Ascent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | N          | ob<br>lumber<br>6357LG  |
|                                                                                                                                                      | Depth (m) Sample / Tests                                                                                                                          |                       | ee Location Plan.                                                                                                                                      | Dates<br>06                          | 5/09/2012                                                                          | <b>Engineer</b> GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | S          | heet<br>1/1             |
| Depth<br>(m)                                                                                                                                         | Sample / Tests                                                                                                                                    | Water<br>Depth<br>(m) | Field Records                                                                                                                                          | Level<br>(mOD)                       | Depth<br>(m)<br>(Thickness)                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Legend                               | Water      | Instr                   |
| 0.50-0.50<br>0.70<br>0.90<br>1.00-1.00<br>1.00-2.00<br>1.00-1.45<br>2.00-2.45<br>3.00-3.45<br>3.90<br>4.00-4.45<br>4.60<br>4.70<br>4.90<br>5.00-5.45 | S1<br>CU 100kPa<br>CU 38kPa<br>N2<br>G3<br>SPT N=18<br>SPT N=7<br>SPT N=5<br>CU 34kPa<br>SPT N=20<br>CU 92kPa<br>CU 53kPa<br>CU 55kPa<br>SPT N=86 |                       | P.I.D 0.0  CLAY crumbles during Shear Vane test 0.70m bgl - 3.90m bgl. P.I.D 0.0 3,4/5,4,5,4  2,1/2,2,1,2  minor(1) at 2.70m. 0,0/0,1,2,2  4,4/4,4,5,7 | 178.57<br>178.02<br>176.82<br>174.82 | 0.05<br>(0.55)<br>0.60<br>1 1.80<br>1 1.80<br>1 1.80<br>1 1.80<br>1 1.80<br>1 1.80 | Bituminous macadam.  MADE GROUND comprising dark brown gravelly slightly cobbly slightly bouldery SAND with fine ash. Gravel is sub angular fine to coarse of limestone. Cobbles are sub angular of limestone. Boulders are sub angular of limestone.  Firm fissured orangish brown sandy gravelly slightly cobbly CLAY. Gravel is sub angular to sub rounded fine to coarse of various lithologies.  Loose brown silty gravelly medium to coarse SAND. Gravel is sub angular to sub rounded fine to coarse of various lithologies.  CLAY band 2.60m bgl - 2.70m bgl.  CLAY band 2.80m bgl - 2.90m bgl.  CLAY band 3.50m bgl - 3.60m bgl.  Soft to firm greyish brown very sandy gravelly CLAY with coal traces. Gravel is sub angular to sut rounded fine to coarse of various lithologies.  COAL trace.  Unknown OBSTRUCTION.  Complete at 5.45m |                                      | <b>∇</b> 1 |                         |
| Remarks<br>Window San                                                                                                                                | nple hole terminated                                                                                                                              | at 5.30m              | bgl after SPT refusal on unkno                                                                                                                         | Dwn OBSTF                            | <u> </u>                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Scale (approx)  1:50  Figure N 26357 | lo.        | ogged<br>y<br>GF<br>WS3 |

| Sutcliffe I                                                                                                                                                                                                | nve                   | stigations                                                                                                                                                       |                               |                                                                                                                      | Site Albert Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number<br>WS4            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Excavation Method Dando Terrier Rig.                                                                                                                                                                       | Dimens                |                                                                                                                                                                  |                               | <b>Level (mOD)</b><br>178.10                                                                                         | Client Ascent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Job<br>Number<br>26357LG |
|                                                                                                                                                                                                            | Locatio               | on<br>se Location Plan.                                                                                                                                          | Dates<br>06                   | 6/09/2012                                                                                                            | <b>Engineer</b> GF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sheet 1/1                |
| Depth (m) Sample / Tests                                                                                                                                                                                   | Water<br>Depth<br>(m) | Field Records                                                                                                                                                    | Level<br>(mOD)                | Depth<br>(m)<br>(Thickness)                                                                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Legend stee              |
| (m) Sample / Tests  0.30-0.30 S1  0.70 CU 53kPa CU 77kPa N2  1.00-1.45 SPT N=17 CU 70kPa  1.75 CU 120kPa  2.00-2.45 SPT N=19  3.00-3.45 SPT N=6  4.00-4.45 SPT N=3  5.00-5.45 SPT N=17  5.45-5.90 SPT N=55 | Depth (m)             | P.I.D 0.0  CLAY shatters under Shear Vane 0.70m bgl - 0.90m bgl. P.I.D 0.0 2,3/4,3,4,6  minor(1) at 3.00m. 3,2/2,2,1,1  1,1/1,0,1,1  2,3/3,4,4,6  7,7/9,14,15,17 | (mOD)  178.05  177.70  176.25 | (0.05)<br>(0.05)<br>(0.05)<br>(0.35)<br>(0.40)<br>(1.45)<br>(1.45)<br>(1.45)<br>(1.45)<br>(1.45)<br>(1.45)<br>(1.45) | Bituminous macadam.  MADE GROUND comprising dark brown gravelly SAND with half bricks and cobble sized sub angular fragments of clinker. Gravel is sub angular fine to coarse of brick and clinker.  Firm closely fissured thinly laminated dessicated orangish brown sandy gravelly slightly cobbly CLAY. Surfaces are planar rough with fine light grey silt. Gravel is sub angular to sub rounded fine to coarse of various lithologies. Cobbles are sub angular of sandstone.  SAND band 1.55m bgl - 1.70m bgl.  Medium dense becoming loose gravelly slightly clayey medium and coarse SAND. Gravel is sub angular fine to coarse of coal and other various lithologies.  CLAY band at 2.70m bgl - 2.80m bgl.  Machine drilled under own weight 4.00m bgl - 4.50m bgl.  Soft to firm dark grey very sandy gravelly CLAY. Gravel is sub rounded to rounded fine to coarse of various lithologies.  Refusal.  Complete at 5.90m |                          |
| Remarks<br>Window Sample hole terminated                                                                                                                                                                   | at 5.90m              | bgl after SPT refusal in stiff C                                                                                                                                 | CLAY.                         |                                                                                                                      | Scale (approx)  1:50  Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GF                       |


## APPENDIX C - GROUND GAS RESULTS

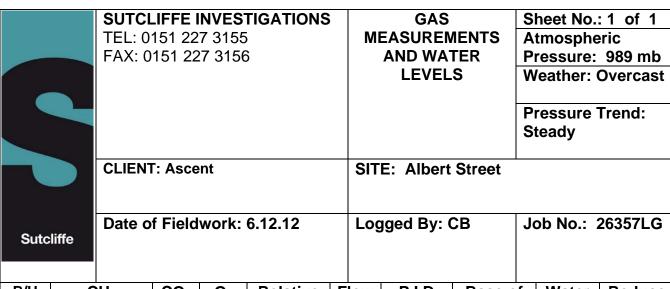
+




| B/H<br>REF | CI         | H <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | Relative<br>Pressure | Flow<br>Rate | P.I.D | Base of Borehole | Water<br>Level | Reduced<br>Water<br>Level |
|------------|------------|----------------|-----------------|----------------|----------------------|--------------|-------|------------------|----------------|---------------------------|
|            | %LE        | %by            | %by             | %by            | (mb)                 | (l/h)        |       | (mbgl)           | (mbgl)         | (m)                       |
|            | L          | vol            | vol             | vol            |                      |              |       |                  |                | A.O.D                     |
| WS2        |            | 0.1            | 0.6             | 20.5           | 0.0                  | +0.1         | 0.0   | 3.10             | 3.10 1.30      |                           |
|            |            | 0.1            | 0.5             | 20.1           |                      |              |       |                  |                |                           |
|            | 0.1<br>0.1 |                | 0.4             | 20.4           |                      |              |       |                  |                |                           |
|            |            |                | 0.3             | 20.4           |                      |              |       |                  |                |                           |
| WS3        |            | 0.1            |                 | 20.6           | 0.0                  | +0.1         | 0.0   | 1.40             | Dry            | -                         |
|            |            | 0.1            | 0.3             | 20.6           |                      |              |       |                  | _              |                           |
|            |            | 0.1            | 0.2             | 20.6           |                      |              |       |                  |                |                           |
|            | 0.1        |                | 0.2             | 20.6           |                      |              |       |                  |                |                           |
|            |            |                |                 |                |                      |              |       |                  |                |                           |
|            |            |                |                 |                |                      |              |       |                  |                |                           |
|            |            |                |                 |                |                      |              |       |                  |                |                           |
|            |            |                |                 |                |                      |              |       |                  |                |                           |
|            |            |                |                 |                |                      |              |       |                  |                |                           |

| INSTRUMENT USED: | ACCURACY      | CH₄         | CO <sub>2</sub> | O <sub>2</sub> |
|------------------|---------------|-------------|-----------------|----------------|
|                  | OF            | ± 0.5% @ 5% | ± 0.5% @ 5%     |                |
|                  | INSTRUMENT    | ± 1.0% @15% | ± 1.0% @15%     | ± 1.0%         |
|                  | (% by volume) | ±3.0% @>15% | ±3.0% @>15%     |                |




| В/Н | CI    | H <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | Relative | Flow  | P.I.D    | Base of  | Water  | Reduced |
|-----|-------|----------------|-----------------|----------------|----------|-------|----------|----------|--------|---------|
| REF |       |                |                 |                | Pressure | Rate  |          | Borehole | Level  | Water   |
|     |       |                |                 |                |          |       |          |          |        | Level   |
|     | %LE   | %by            | %by             | %by            | (mb)     | (l/h) |          | (mbgl)   | (mbgl) | (m)     |
|     | L vol |                | vol             | vol            |          |       |          |          |        | A.O.D   |
| WS2 | 0.1   |                | 0.5             | 20.6           | 0.0      | +0.1  | 0.0 3.10 |          | 1.30   | -       |
|     | 0.1   |                | 0.4             | 20.5           |          |       |          |          |        |         |
|     | 0.1   |                | 0.3             | 20.6           |          |       |          |          |        |         |
|     | 0.1   |                | 0.3             | 20.6           |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
| WS3 |       | 0.1            | 0.4             | 20.6           | 0.0      | +0.1  | 0.0      | 1.40     | Dry    | -       |
|     |       | 0.1            | 0.3             | 20.6           |          |       |          |          |        |         |
|     |       | 0.1            | 0.3             | 20.6           |          |       |          |          |        |         |
|     |       | 0.1            | 0.3             | 20.6           |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |
|     |       |                |                 |                |          |       |          |          |        |         |

| INSTRUMENT USED: | ACCURACY      | CH₄         | CO <sub>2</sub> | $O_2$  |
|------------------|---------------|-------------|-----------------|--------|
|                  | OF            | ± 0.5% @ 5% | ± 0.5% @ 5%     |        |
|                  | INSTRUMENT    | ± 1.0% @15% | ± 1.0% @15%     | ± 1.0% |
|                  | (% by volume) | ±3.0% @>15% | ±3.0% @>15%     |        |



| B/H<br>REF | CI       | H <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | Relative<br>Pressure | Flow<br>Rate | P.I.D    | Base of Borehole | Water<br>Level | Reduced<br>Water      |
|------------|----------|----------------|-----------------|----------------|----------------------|--------------|----------|------------------|----------------|-----------------------|
|            | %LE<br>L | %by            | %by             | %by<br>vol     | (mb)                 | (l/h)        |          | (mbgl)           | (mbgl)         | Level<br>(m)<br>A.O.D |
| WS2        |          | 0.1            | 1.7             | 20.8           | 0.0                  | +0.1         | 0.0 3.10 |                  | 1.50           | -                     |
|            |          | 0.1            |                 | 19.6           |                      |              |          |                  |                |                       |
|            | 0.1      |                | 1.0             | 20.0           |                      |              |          |                  |                |                       |
|            |          |                | 0.9             | 20.1           |                      |              |          |                  |                |                       |
| WS3        |          | 0.1            | 0.4             | 21.1           | 0.0                  | 0.0          | 0.0      | 1.40             | Dry            | -                     |
|            |          | 0.1            | 0.3             | 21.1           |                      |              |          |                  |                |                       |
|            |          | 0.1            | 0.2             | 21.1           |                      |              |          |                  |                |                       |
|            | 0.1      |                | 0.2             | 21.1           |                      |              |          |                  |                |                       |
|            |          |                |                 |                |                      |              |          |                  |                |                       |
|            |          |                |                 |                |                      |              |          |                  |                |                       |
|            |          |                |                 |                |                      |              |          |                  |                |                       |
|            |          |                |                 |                |                      |              |          |                  |                |                       |

| INSTRUMENT USED: | ACCURACY      | CH₄         | CO <sub>2</sub> | O <sub>2</sub> |
|------------------|---------------|-------------|-----------------|----------------|
|                  | OF            | ± 0.5% @ 5% | ± 0.5% @ 5%     |                |
|                  | INSTRUMENT    | ± 1.0% @15% | ± 1.0% @15%     | ± 1.0%         |
|                  | (% by volume) | ±3.0% @>15% | ±3.0% @>15%     |                |



| B/H<br>REF | Ci       | H <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | Relative<br>Pressure | Flow<br>Rate | P.I.D | Base of Borehole | Water<br>Level | Reduced<br>Water<br>Level |
|------------|----------|----------------|-----------------|----------------|----------------------|--------------|-------|------------------|----------------|---------------------------|
|            | %LE<br>L | %by<br>vol     | %by<br>vol      | %by<br>vol     | (mb)                 | (l/h)        |       | (mbgl)           | (mbgl)         | (m)<br>A.O.D              |
| WS2        |          | 0.1            | 1.6             | 21.0           | 0.0                  | 0.0          | 0.0   | 3.10             | 2.00           | -                         |
|            |          | 0.1            |                 | 20.7           |                      |              |       |                  |                |                           |
|            |          | 0.1            | 0.9             | 20.8           |                      |              |       |                  |                |                           |
|            | 0.1      |                | 0.8             | 20.8           |                      |              |       |                  |                |                           |
|            |          |                |                 |                |                      |              |       |                  |                |                           |
| WS3        |          | 0.1            | 0.4             | 21.1           | 0.0                  | 0.0          | 0.0   | 1.40             | Dry            | -                         |
|            |          | 0.1            | 0.5             | 21.0           |                      |              |       |                  |                |                           |
|            |          | 0.1            | 0.4             | 21.0           |                      |              |       |                  |                |                           |
|            | 0.1      |                | 0.4             | 21.0           |                      |              |       |                  |                |                           |
|            |          |                |                 |                |                      |              |       |                  |                |                           |
|            |          |                |                 |                |                      |              |       |                  |                |                           |
|            |          |                |                 |                |                      |              |       |                  |                |                           |
|            |          |                |                 |                |                      |              |       |                  |                |                           |

| INSTRUMENT USED: | ACCURACY      | CH₄         | CO <sub>2</sub> | O <sub>2</sub> |
|------------------|---------------|-------------|-----------------|----------------|
|                  | OF            | ± 0.5% @ 5% | ± 0.5% @ 5%     |                |
|                  | INSTRUMENT    | ± 1.0% @15% | ± 1.0% @15%     | ± 1.0%         |
|                  | (% by volume) | ±3.0% @>15% | ±3.0% @>15%     |                |

**APPENDIX D - CONTAMINATION RESULTS** 



| Job Name:   | Albert Street |
|-------------|---------------|
| Job Number: | 26357LG       |

| Contaliffa                                         |                |      |                            |                                 | REVISED          | 31/03/11                                             |             |             |             | ]            |                |              |              |              |              |
|----------------------------------------------------|----------------|------|----------------------------|---------------------------------|------------------|------------------------------------------------------|-------------|-------------|-------------|--------------|----------------|--------------|--------------|--------------|--------------|
| Sutcliffe                                          |                |      |                            | RESIDENTIAL WITH PLANT UPTAKE   |                  |                                                      |             |             |             |              | 12-68454       | 12-68454     | 12-68454     | 12-68454     | 12-68454     |
|                                                    | [              |      | Atleina                    | Additional Values               | Atkins           | 1                                                    |             | LQM         |             | 442908       | 442909         | 442910       | 442911       | 442912       | 442913       |
| Contaminant                                        | Units          | SGV  | Atkins<br>Atrisk<br>1% SOM | for 1% SOM<br>(mg/kg) See notes | Atrisk<br>6% SOM | Additional Values<br>for 6% SOM<br>(mg/kg) See notes | SOM<br>1%   | SOM<br>2.5% | SOM<br>5%   | WS1<br>0.40m | WS1<br>1.00m   | WS2<br>0.40m | WS3<br>0.50m | WS4<br>0.30m | WS4<br>0.90m |
| Arsenic (Total)                                    | mg/kg          | 32   | 32                         |                                 | 32               |                                                      |             |             |             | 5.8          | 6.5            | 5.3          | 6.2          | 7.5          | 7.3          |
| Boron (Soluble)                                    | mg/kg          |      |                            |                                 |                  |                                                      |             | 291         |             | 3.5          | 1.2            | 4.6          | 3.8          | 2.7          | 1.1          |
| Cadmium (Total)                                    | mg/kg          |      | 10                         |                                 | 10               |                                                      |             | 3           |             | 0.7          | 0.5            | 0.4          | 0.6          | 8.0          | 0.7          |
| Chromium III Chromium VI                           | mg/kg          |      | 12800                      |                                 | 12900            |                                                      |             | 627         |             | 19           | 22             | 16           | 14           | 19           | 23           |
| Copper (Total)                                     | mg/kg<br>mg/kg |      | 14.2<br>3970               |                                 | 14.5<br>4020     |                                                      |             | 4.3<br>2330 |             | < 1.0<br>33  | < 1.0<br>19    | < 1.0<br>15  | < 1.0<br>22  | < 1.0<br>23  | < 1.0<br>28  |
| Lead (Total)                                       | mg/kg          |      | 276                        |                                 | 342              |                                                      |             | 2330        |             | 17           | 9.8            | 16           | 26           | 26           | 13           |
| Mercury (Total)                                    | mg/kg          | 170  | 170                        |                                 | 170              |                                                      |             |             |             | < 0.05       | < 0.05         | < 0.05       | < 0.05       | < 0.05       | < 0.05       |
| Nickel (Total)                                     | mg/kg          | 130  | 130                        |                                 | 130              |                                                      |             |             |             | 22           | 22             | 14           | 7.6          | 12           | 27           |
| Selenium (Total)                                   | mg/kg          | 350  | 350                        |                                 | 350              |                                                      |             |             |             | 2.8          | < 0.5          | 3.7          | 5.2          | 4            | < 0.5        |
| Zinc (Total)                                       | mg/kg          |      | 16900                      |                                 | 17200            |                                                      |             | 3750        |             | 71           | 43             | 63           | 120          | 110          | 59           |
| Cyanide (Total)                                    | mg/kg          |      | 34                         |                                 | 34               |                                                      |             |             |             | 6.2          | 0.8            | 0.2          | 0.5          | 0.3          | 0.4          |
| Phenols (Total)                                    | mg/kg          |      | 162                        |                                 | 420              |                                                      | 210         | 390         | 780         | 1.2          | 0.6            | < 0.3        | < 0.3        | < 0.3        | < 0.3        |
| Organic matter                                     | %<br>%         |      |                            |                                 |                  |                                                      |             |             |             | 7.9          | 0.8            | 6.7<br>0.11  | 5.4          | 5.6<br>0.16  | 0.7          |
| Sulphate (Total) as SO3 Sulphate as Water Soluble  | g/l            |      |                            |                                 |                  |                                                      |             |             |             | 0.17<br>0.69 | 0.08           | 0.11         | 0.21<br>0.58 | 0.16         | 0.07         |
| Sulphide Sulphide                                  | mg/kg          |      |                            |                                 |                  |                                                      |             |             |             | 1500         | 16             | 2100         | 3200         | 4400         | 63           |
| pH                                                 | pH units       |      |                            |                                 |                  |                                                      |             |             |             | 8.5          | 9.4            | 7            | 9.8          | 10.3         | 6.8          |
| Sulphur (Elemental)                                | mg/kg          |      |                            |                                 |                  |                                                      |             |             |             | 260          | 34             | 150          | 110          | 170          | 4.3          |
| >> TPH SUITE <<                                    | 99             |      |                            |                                 |                  |                                                      |             |             |             |              |                |              |              |              |              |
| TPH (Total)                                        |                |      |                            |                                 |                  |                                                      |             |             |             |              |                |              |              |              |              |
| Total Aliphatic                                    |                |      |                            |                                 |                  |                                                      |             |             |             |              |                |              |              |              |              |
| >C5 to C6 aliphatic                                | mg/kg          |      | 30.1                       |                                 | 259              |                                                      | 30          | 55          | 110         | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C6 to C8 aliphatic                                | mg/kg          |      | 69.8                       |                                 | 14700            | 769                                                  | 73          | 160         | 370         | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C8 to C10 aliphatic                               | mg/kg          |      | 9.79                       | 40.0                            | 144              | 207                                                  | 19          | 46          | 110         | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C10 to C12 aliphatic<br>>C12 to C16 aliphatic     | mg/kg          |      | 1390<br>5100               | 49.9<br>21                      | 4140<br>5260     | 297<br>126                                           | 93<br>740   | 230<br>1700 | 540<br>3000 | < 1.5<br>3.4 | N/S<br>N/S     | N/S<br>N/S   | N/S<br>N/S   | < 1.5<br>8.9 | N/S<br>N/S   |
| >C12 to C10 aliphatic                              | mg/kg<br>mg/kg |      | 145000                     | 21                              | 145000           | 120                                                  | 45000       | 64000       | 76000       | 23           | N/S            | N/S          | N/S          | 38           | N/S          |
| >C21 to C35 aliphatic                              | mg/kg          |      | 145000                     |                                 | 145000           |                                                      | 45000       | 64000       |             | 290          | N/S            | N/S          | N/S          | 430          | N/S          |
| Total Aromatic                                     | g,r.g          |      | 1 10000                    |                                 | 1 10000          |                                                      | .0000       | 0.000       | 7 0000      | 200          | , .            | , .          | , .          | .00          |              |
| >C5 to C7 aromatic<br>(Benzene)                    | mg/kg          |      | 0.0493                     |                                 | 0.33             |                                                      | 65          | 130         | 280         | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C7 to C8 aromatic<br>(Toluene)                    | mg/kg          |      | 86.9                       |                                 | 610              |                                                      | 120         | 270         | 611         | 0.01         | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C8 to C10 aromatic                                | mg/kg          |      | 14.8                       |                                 | 177              |                                                      | 27          | 65          | 151         | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >C10 to C12 aromatic                               | mg/kg          |      | 57.3                       |                                 | 389              |                                                      | 69          | 160         | 346         | < 0.9        | N/S            | N/S          | N/S          | < 0.9        | N/S          |
| >C12 to C16 aromatic                               | mg/kg          |      | 142                        |                                 | 687              |                                                      | 140         | 310         | 593         | 3.7          | N/S            | N/S          | N/S          | 25           | N/S          |
| >C16 to C21 aromatic                               | mg/kg          |      | 272                        |                                 | 804              |                                                      | 250         | 480         | 770         | 53           | N/S            | N/S          | N/S          | 440          | N/S          |
| >C21 to C35 aromatic >> BTEX SUITE <<              | mg/kg          |      | 888                        |                                 | 1220             |                                                      | 890         | 1100        | 1230        | 440          | N/S            | N/S          | N/S          | 1600         | N/S          |
| >> BTEX SUITE << begin{tikzpicture}(2007)  benzene | mg/kg          | 0.33 | 0.0493                     |                                 | 0.33             |                                                      |             |             |             | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| toluene                                            | mg/kg          | 610  | 86.9                       |                                 | 610              |                                                      |             |             |             | 0.01         | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| ethylbenzene                                       | mg/kg          | 350  | 38.2                       |                                 | 350              |                                                      |             |             |             | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| xylene                                             | mg/kg          | 230  | 17.2                       |                                 | 230              |                                                      |             |             |             | < 0.01       | N/S            | N/S          | N/S          | < 0.01       | N/S          |
| >> PAH SUITE <<                                    |                |      |                            |                                 |                  |                                                      |             |             |             |              |                |              |              |              |              |
| naphthalene                                        | mg/kg          |      | 0.585                      |                                 | 8.71             |                                                      | 1.5         | 3.7         | 8.7         | 0.3          | < 0.1          | < 1.1        | < 1.1        | < 1.1        | < 0.1        |
| acenaphthylene                                     | mg/kg          |      |                            |                                 |                  |                                                      | 170         | 400         | 850         | < 0.1        | < 0.1          | < 1.1        | < 1.1        | 1.2          | < 0.1        |
| acenaphthene                                       | mg/kg          |      | 588                        | 157                             | 2130             | 937                                                  | 210         | 480         | 1000        | 0.2          | < 0.1          | 5.1          | < 1.1        | 12           | < 0.1        |
| fluorene                                           | mg/kg          |      | 615                        | 125                             | 1930             | 746                                                  | 160         | 380         | 780         | 0.2          | < 0.1          | 5.8          | 1.2          | 16           | < 0.1        |
| phenanthrene                                       | mg/kg          |      | 0070                       | 2.40                            | 10200            | 20.0                                                 | 92          | 200         | 380         | 0.4          | < 0.1          | 32<br>14     | 7.5<br>5.8   | 90<br>43     | < 0.1        |
| anthracene<br>fluoranthene                         | mg/kg<br>mg/kg |      | 8270<br>822                | 3.48<br>18.9                    | 18300<br>2160    | 20.9<br>113                                          | 2300<br>260 | 4900<br>460 | 9200<br>670 | 2.4          | < 0.1<br>< 0.1 | 92           | 100          | 270          | < 0.1<br>0.1 |
| pyrene                                             | mg/kg          |      | 563                        | 2.2                             | 1550             | 13.2                                                 | 560         | 1000        | 1600        | 2.4          | < 0.1          | 85           | 110          | 230          | < 0.1        |
| benzo(a)anthracene                                 | mg/kg          |      | 4.52                       | 1.71                            | 8.54             | . 3.2                                                | 3.1         | 4.7         | 5.9         | 1.5          | < 0.1          | 44           | 66           | 130          | 0.1          |
| chrysene                                           | mg/kg          |      | 585                        | 0.44                            | 927              | 2.64                                                 | 6           | 8           | 9.3         | 1.8          | < 0.1          | 45           | 68           | 130          | < 0.1        |
| benzo(b)fluoranthene                               | mg/kg          |      | 7.72                       | 1.22                            | 9.86             | 7.29                                                 | 5.6         | 6.5         | 7           | 1.3          | < 0.1          | 34           | 57           | 110          | < 0.1        |
| benzo(k)fluoranthene                               | mg/kg          |      | 84.4                       | 0.686                           | 100              | 4.12                                                 | 8.5         | 9.6         | 10          | 0.9          | < 0.1          | 20           | 35           | 60           | < 0.1        |
| benzo(a)pyrene                                     | mg/kg          |      | 0.818                      |                                 | 0.998            |                                                      | 0.83        | 0.94        | 1           | 1.5          | < 0.1          | 43           | 79           | 140          | 0.1          |
| dibenzo(ah)anthracene                              | mg/kg          |      | 0.838                      | 0.00393                         | 1                | 0.0236                                               | 0.76        | 0.86        | 0.9         | 0.4          | < 0.1          | 7.3          | 6.8          | 15           | < 0.1        |
| benzo(ghi)perylene                                 | mg/kg          |      | 96.2                       | 0.0187                          | 103              | 0.112                                                | 44          | 46          | 47          | 2.5          | < 0.1          | 41           | 55           | 98           | < 0.1        |
| indeno(123cd)pyrene                                | mg/kg          |      | 7.31                       | 0.0614                          | 9.75             | 0.368                                                | 3.2         | 3.9         | 4.2         | 1.7          | < 0.1          | 40           | 59           | 100          | < 0.1        |



| Job Name:   | Albert Street |
|-------------|---------------|
| Job Number: | 26357LG       |

|                               | l        | LEACHATE  | S       | 12-68454-1 | 12-68454-1 |
|-------------------------------|----------|-----------|---------|------------|------------|
| CAS Number:                   |          | Site S    | pecific | 442914     | 442915     |
| Sample Ref                    | Units    | Guide     | elines  | WS1        | WS4        |
| Determinand Name              |          | EQS       | UK DWS  | 0.4        | 0.3        |
| Leachate Prep (10:1 Std NRA)* |          |           |         | Y          | Υ          |
| Arsenic (Soluble)*            | μg/l     | 50        | 10      | 0.8        | 0.8        |
| Boron (Soluble)               | mg/l     | 2000      | 1000    | 0.31       | 0.33       |
| Cadmium (Soluble)             | μg/l     | 5         | 5       | < 0.030    | < 0.030    |
| Chromium (Soluble)            | μg/l     | 5 to 250  | 50      | < 0.25     | < 0.25     |
| Copper (Soluble)              | μg/l     | 1 to 28   | 2000    | < 0.40     | 0.64       |
| Lead (Soluble)                | μg/l     | 4 to 250  | 25      | < 0.090    | < 0.090    |
| Mercury (Soluble)             | μg/l     | 1         | 1       | < 0.05     | < 0.05     |
| Nickel (Soluble)              | μg/l     | 50 to 200 | 50      | < 0.50     | < 0.50     |
| Selenium (Soluble)*           | μg/l     |           | 10      | 1.1        | 1.7        |
| Sulphur (Free)                | mg/l     |           |         | < 0.09     | < 0.09     |
| Zinc (Soluble)                | μg/l     | 8 to 500  | 5000    | 1.3        | < 1.3      |
| Cyanide (Total)*              | mg/l     |           | 50      | < 0.04     | < 0.04     |
| Phenols (Total)               | mg/l     |           |         | < 0.0005   | < 0.0005   |
| Sulphate as SO3               | mg/l     | 400       | 250     | 82         | 16         |
| Sulphide as S                 | μg/l     | 0.25      |         | < 10.0     | < 10.0     |
| рН                            | pH units |           |         | 7.8        | 8.3        |
| EPH >C10 - C40                |          |           |         | 61         | 260        |
| >> PAH SUITE <<*              |          |           |         |            |            |
| naphthalene*                  | μg/l     | 5         |         | 0.11       | 0.24       |
| acenaphthylene*               | μg/l     |           |         | < 0.01     | < 0.01     |
| acenaphthene*                 | μg/l     |           |         | < 0.01     | 0.52       |
| fluorene*                     | μg/l     |           |         | < 0.01     | 0.09       |
| phenanthrene*                 | μg/l     |           |         | 0.11       | 2          |
| anthracene*                   | μg/l     | 0.02      |         | 0.04       | 0.91       |
| fluoranthene*                 | μg/l     |           |         | 4.4        | 16         |
| pyrene*                       | μg/l     |           |         | 5.1        | 17         |
| benzo(a)anthracene*           | μg/l     |           |         | 2.3        | 6          |
| chrysene*                     | μg/l     |           |         | 1.6        | 4.4        |
| benzo(b)fluoranthene*         | μg/l     |           |         | 3.6        | 6.4        |
| benzo(k)fluoranthene*         | μg/l     |           |         | 1.9        | 3.5        |
| benzo(a)pyrene*               | μg/l     | 0.03      | 0.01    | 3.3        | 7.5        |
| dibenzo(ah)anthracene*        | μg/l     |           |         | 0.47       | 1.5        |
| benzo(ghi)perylene*           | μg/l     |           |         | 2.1        | 1.7        |
| indeno(123cd)pyrene*          | μg/l     |           |         | 4.2        | 4.7        |





### Certificate of Analysis

Date: 14/09/2012

2139 Certificate Number: 12-68454

Client: Sutcliffe

18-20 Harrington Street

Liverpool Merseyside L2 9QA

Our Reference: 12-68454

Client Reference: 26357LG

Contract Title: Albert Street

Description: 6 soil samples, 2 leachate samples

Date Received: 07 September 2012

Date Started: 07 September 2012

Date Completed: 14 September 2012

Test Procedures: Identified by prefix DETSn (details on request), Asbestos Analysis (DETS 082).

Notes: Observations and interpretations are outside the scope of UKAS accreditation

Approved By:

Rob Brown, Business Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

### Information in Support of the Analytical Results

#### **Analysis**

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425um sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample.

#### Key

- \* Denotes test not included in laboratory scope of accreditation
- # Denotes test that holds MCERTS accreditation, however, MCERTS accreditation is only implied if the report carries the MCERTS logo
- \$ Denotes tests completed by an approved subcontractor
- I/S Denotes insufficient sample to carry out test
- U/S Denotes that the sample is not suitable for testing

#### **Disposal**

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month

Liquids - 2 weeks

Asbestos (test portion) - 6 months

|                                 |       |             | Lab No.    | 442908     | 442909     | 442910     | 442911     |
|---------------------------------|-------|-------------|------------|------------|------------|------------|------------|
|                                 |       | ,           | Sample ID  | WS1        | WS1        | WS2        | WS3        |
|                                 |       |             | Depth      | 0.40       | 1.00       | 0.40       | 0.50       |
|                                 |       | Sa          | ample Ref  |            |            |            |            |
|                                 |       | Sar         | nple Type  |            |            |            |            |
|                                 |       | Sam         | oling Date | 06/09/2012 | 06/09/2012 | 06/09/2012 | 06/09/2012 |
|                                 |       | Samp        | ling Time  |            |            |            |            |
| Test                            | Units | DETSxx      | LOD        |            |            |            |            |
| Moisture Content                | %     | DETS 046*   | 0.1        | 17         | 16         | 9.0        | 10         |
| Arsenic                         | mg/kg | DETS 042#   | 0.2        | 5.8        | 6.5        | 5.3        | 6.2        |
| Cadmium                         | mg/kg | DETS 042#   | 0.1        | 0.7        | 0.5        | 0.4        | 0.6        |
| Chromium III                    | mg/kg | DETS 042*   | 0.15       | 19         | 22         | 16         | 14         |
| Chromium                        | mg/kg | DETS 042#   | 0.15       | 19         | 22         | 16         | 14         |
| Hexavalent Chromium             | mg/kg | DETSC 2204* | 1          | < 1.0      | < 1.0      | < 1.0      | < 1.0      |
| Copper                          | mg/kg | DETS 042#   | 0.2        | 33         | 19         | 15         | 22         |
| Lead                            | mg/kg | DETS 042#   | 0.3        | 17         | 9.8        | 16         | 26         |
| Mercury                         | mg/kg | DETSC 2325# | 0.05       | < 0.05     | < 0.05     | < 0.05     | < 0.05     |
| Nickel                          | mg/kg | DETS 042#   | 1          | 22         | 22         | 14         | 7.6        |
| Selenium                        | mg/kg | DETS 042#   | 0.5        | 2.8        | < 0.5      | 3.7        | 5.2        |
| Zinc                            | mg/kg | DETS 042#   | 1          | 71         | 43         | 63         | 120        |
| Boron (water soluble)           | mg/kg | DETS 020#   | 0.2        | 3.5        | 1.2        | 4.6        | 3.8        |
| Cyanide total                   | mg/kg | DETSC 2130# | 0.1        | 6.2        | 0.8        | 0.2        | 0.5        |
| Organic matter                  | %     | DETSC 2002# | 0.1        | 7.9        | 0.8        | 6.7        | 5.4        |
| Sulphur (free)                  | mg/kg | DETSC 3049# | 0.75       | 260        | 34         | 150        | 110        |
| Sulphide                        | mg/kg | DETSC 2024# | 10         | 1500       | 16         | 2100       | 3200       |
| Total Sulphate as SO4           | %     | DETSC 2321# | 0.01       | 0.17       | 0.08       | 0.11       | 0.21       |
| Sulphate Aqueous Extract as SO4 | mg/l  | DETSC 2076# | 10         | 690        | 130        | 490        | 580        |
| рН                              |       | DETSC 2008# |            | 8.5        | 9.4        | 7.0        | 9.8        |
| Aliphatic C5-C6                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |            |            |
| Aliphatic C6-C8                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |            |            |
| Aliphatic C8-C10                | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |            |            |
| Aliphatic C10-C12               | mg/kg | DETSC 3072# | 1.5        | < 1.5      |            |            |            |
| Aliphatic C12-C16               | mg/kg | DETSC 3072# | 1.2        | 3.4        |            |            |            |
| Aliphatic C16-C21               | mg/kg | DETSC 3072# | 1.5        | 23         |            |            |            |
| Aliphatic C21-C35               | mg/kg | DETSC 3072# | 3.4        | 290        |            |            |            |
| Aromatic C5-C7                  | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |            |            |
| Aromatic C7-C8                  | mg/kg | DETSC 3321* | 0.01       | 0.01       |            |            |            |
| Aromatic C8-C10                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |            |            |
| Aromatic C10-C12                | mg/kg | DETSC 3072# | 0.9        | < 0.9      |            |            |            |
| Aromatic C12-C16                | mg/kg | DETSC 3072# | 0.5        | 3.7        |            |            |            |
| Aromatic C16-C21                | mg/kg | DETSC 3072# | 0.6        | 53         |            |            |            |
| Aromatic C21-C35                | mg/kg | DETSC 3072# | 1.4        | 440        |            |            |            |
| Aliphatic C5-C35                | mg/kg | DETSC 3072* | 10         | 320        |            |            |            |
| Aromatic C5-C35                 | mg/kg | DETSC 3072* | 10         | 500        |            |            |            |
| TPH Ali/Aro                     | mg/kg | DETSC 3072* | 10         | 820        |            |            |            |

|                         |       | Lab No.           | 442908      | 442909     | 442910     | 442911     |            |
|-------------------------|-------|-------------------|-------------|------------|------------|------------|------------|
|                         |       |                   | Sample ID   | WS1        | WS1        | WS2        | WS3        |
|                         |       |                   | Depth       | 0.40       | 1.00       | 0.40       | 0.50       |
|                         |       |                   | Sample Ref  |            |            |            |            |
|                         |       | s                 | ample Type  |            |            |            |            |
|                         |       | Sar               | mpling Date | 06/09/2012 | 06/09/2012 | 06/09/2012 | 06/09/2012 |
|                         |       | San               | npling Time |            |            |            |            |
| Test                    | Units | DETSxx            | LOD         |            |            |            |            |
| Acenaphthene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 0.2        | < 0.1      | 5.1        | < 1.1      |
| Acenaphthylene          | mg/kg | <b>DETSC 3301</b> | 0.1         | < 0.1      | < 0.1      | < 1.1      | < 1.1      |
| Anthracene              | mg/kg | DETSC 3301        | 0.1         | 0.2        | < 0.1      | 14         | 5.8        |
| Benzo(a)anthracene      | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.5        | < 0.1      | 44         | 66         |
| Benzo(a)pyrene          | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.5        | < 0.1      | 43         | 79         |
| Benzo(b)fluoranthene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.3        | < 0.1      | 34         | 57         |
| Benzo(k)fluoranthene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 0.9        | < 0.1      | 20         | 35         |
| Benzo(g,h,i)perylene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 2.5        | < 0.1      | 41         | 55         |
| Chrysene                | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.8        | < 0.1      | 45         | 68         |
| Dibenzo(a,h)anthracene  | mg/kg | DESTC 3301        | 0.1         | 0.4        | < 0.1      | 7.3        | 6.8        |
| Fluoranthene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 2.4        | < 0.1      | 92         | 100        |
| Fluorene                | mg/kg | <b>DETSC 3301</b> | 0.1         | 0.2        | < 0.1      | 5.8        | 1.2        |
| Indeno(1,2,3-c,d)pyrene | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.7        | < 0.1      | 40         | 59         |
| Naphthalene             | mg/kg | <b>DETSC 3301</b> | 0.1         | 0.3        | < 0.1      | < 1.1      | < 1.1      |
| Phenanthrene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 0.4        | < 0.1      | 32         | 7.5        |
| Pyrene                  | mg/kg | <b>DETSC 3301</b> | 0.1         | 2.6        | < 0.1      | 85         | 110        |
| PAH                     | mg/kg | <b>DETSC 3301</b> | 1.6         | 18         | < 1.6      | 510        | 650        |
| Benzene                 | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |            |            |
| Ethylbenzene            | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |            |            |
| Toluene                 | mg/kg | DETS 062#         | 0.01        | 0.01       |            |            |            |
| Xylene                  | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |            |            |
| MTBE                    | mg/kg | DETS 062          | 0.01        | < 0.01     |            |            |            |
| Phenol - Monohydric     | mg/kg | DETSC 2130#       | 0.3         | 1.2        | 0.6        | < 0.3      | < 0.3      |
| Stones >2mm             | % m/m | DETSC 1003*       | 1           | 52         | < 1.0      | 54         | 50         |

|                                 |       |             | Lab No.    | 442912     | 442913     |
|---------------------------------|-------|-------------|------------|------------|------------|
|                                 |       |             | Sample ID  | WS4        | WS4        |
|                                 |       |             | Depth      | 0.30       | 0.90       |
|                                 |       | S           | Sample Ref |            |            |
|                                 |       | Sa          | mple Type  |            |            |
|                                 |       | Sam         | pling Date | 06/09/2012 | 06/09/2012 |
|                                 |       | Sam         | pling Time |            |            |
| Test                            | Units | DETSxx      | LOD        |            |            |
| Moisture Content                | %     | DETS 046*   | 0.1        | 8.0        | 11         |
| Arsenic                         | mg/kg | DETS 042#   | 0.2        | 7.5        | 7.3        |
| Cadmium                         | mg/kg | DETS 042#   | 0.1        | 0.8        | 0.7        |
| Chromium III                    | mg/kg | DETS 042*   | 0.15       | 19         | 23         |
| Chromium                        | mg/kg | DETS 042#   | 0.15       | 19         | 23         |
| Hexavalent Chromium             | mg/kg | DETSC 2204* | 1          | < 1.0      | < 1.0      |
| Copper                          | mg/kg | DETS 042#   | 0.2        | 23         | 28         |
| Lead                            | mg/kg | DETS 042#   | 0.3        | 26         | 13         |
| Mercury                         | mg/kg | DETSC 2325# | 0.05       | < 0.05     | < 0.05     |
| Nickel                          | mg/kg | DETS 042#   | 1          | 12         | 27         |
| Selenium                        | mg/kg | DETS 042#   | 0.5        | 4.0        | < 0.5      |
| Zinc                            | mg/kg | DETS 042#   | 1          | 110        | 59         |
| Boron (water soluble)           | mg/kg | DETS 020#   | 0.2        | 2.7        | 1.1        |
| Cyanide total                   | mg/kg | DETSC 2130# | 0.1        | 0.3        | 0.4        |
| Organic matter                  | %     | DETSC 2002# | 0.1        | 5.6        | 0.7        |
| Sulphur (free)                  | mg/kg | DETSC 3049# | 0.75       | 170        | 4.3        |
| Sulphide                        | mg/kg | DETSC 2024# | 10         | 4400       | 63         |
| Total Sulphate as SO4           | %     | DETSC 2321# | 0.01       | 0.16       | 0.07       |
| Sulphate Aqueous Extract as SO4 | mg/l  | DETSC 2076# | 10         | 250        | 73         |
| рН                              |       | DETSC 2008# |            | 10.3       | 6.8        |
| Aliphatic C5-C6                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aliphatic C6-C8                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aliphatic C8-C10                | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aliphatic C10-C12               | mg/kg | DETSC 3072# | 1.5        | < 1.5      |            |
| Aliphatic C12-C16               | mg/kg | DETSC 3072# | 1.2        | 8.9        |            |
| Aliphatic C16-C21               | mg/kg | DETSC 3072# | 1.5        | 38         |            |
| Aliphatic C21-C35               | mg/kg | DETSC 3072# | 3.4        | 430        |            |
| Aromatic C5-C7                  | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aromatic C7-C8                  | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aromatic C8-C10                 | mg/kg | DETSC 3321* | 0.01       | < 0.01     |            |
| Aromatic C10-C12                | mg/kg | DETSC 3072# | 0.9        | < 0.9      |            |
| Aromatic C12-C16                | mg/kg | DETSC 3072# | 0.5        | 25         |            |
| Aromatic C16-C21                | mg/kg | DETSC 3072# | 0.6        | 440        |            |
| Aromatic C21-C35                | mg/kg | DETSC 3072# | 1.4        | 1600       |            |
| Aliphatic C5-C35                | mg/kg | DETSC 3072* | 10         | 470        |            |
| Aromatic C5-C35                 | mg/kg | DETSC 3072* | 10         | 2100       |            |
| TPH Ali/Aro                     | mg/kg | DETSC 3072* | 10         | 2600       |            |

|                         |       |                   | Lab No.     | 442912     | 442913     |
|-------------------------|-------|-------------------|-------------|------------|------------|
|                         |       |                   | Sample ID   | WS4        | WS4        |
|                         |       |                   | Depth       | 0.30       | 0.90       |
|                         |       | ;                 | Sample Ref  |            |            |
|                         |       | Sa                | ample Type  |            |            |
|                         |       | San               | npling Date | 06/09/2012 | 06/09/2012 |
|                         |       | Sam               | pling Time  |            |            |
| Test                    | Units | DETSxx            | LOD         |            |            |
| Acenaphthene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 12         | < 0.1      |
| Acenaphthylene          | mg/kg | <b>DETSC 3301</b> | 0.1         | 1.2        | < 0.1      |
| Anthracene              | mg/kg | <b>DETSC 3301</b> | 0.1         | 43         | < 0.1      |
| Benzo(a)anthracene      | mg/kg | <b>DETSC 3301</b> | 0.1         | 130        | 0.1        |
| Benzo(a)pyrene          | mg/kg | <b>DETSC 3301</b> | 0.1         | 140        | 0.1        |
| Benzo(b)fluoranthene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 110        | < 0.1      |
| Benzo(k)fluoranthene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 60         | < 0.1      |
| Benzo(g,h,i)perylene    | mg/kg | <b>DETSC 3301</b> | 0.1         | 98         | < 0.1      |
| Chrysene                | mg/kg | <b>DETSC 3301</b> | 0.1         | 130        | < 0.1      |
| Dibenzo(a,h)anthracene  | mg/kg | DESTC 3301        | 0.1         | 15         | < 0.1      |
| Fluoranthene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 270        | 0.1        |
| Fluorene                | mg/kg | <b>DETSC 3301</b> | 0.1         | 16         | < 0.1      |
| Indeno(1,2,3-c,d)pyrene | mg/kg | <b>DETSC 3301</b> | 0.1         | 100        | < 0.1      |
| Naphthalene             | mg/kg | <b>DETSC 3301</b> | 0.1         | < 1.1      | < 0.1      |
| Phenanthrene            | mg/kg | <b>DETSC 3301</b> | 0.1         | 90         | < 0.1      |
| Pyrene                  | mg/kg | <b>DETSC 3301</b> | 0.1         | 230        | < 0.1      |
| PAH                     | mg/kg | <b>DETSC 3301</b> | 1.6         | 1400       | < 1.6      |
| Benzene                 | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |
| Ethylbenzene            | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |
| Toluene                 | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |
| Xylene                  | mg/kg | DETS 062#         | 0.01        | < 0.01     |            |
| MTBE                    | mg/kg | DETS 062          | 0.01        | < 0.01     |            |
| Phenol - Monohydric     | mg/kg | DETSC 2130#       | 0.3         | < 0.3      | < 0.3      |
| Stones >2mm             | % m/m | DETSC 1003*       | 1           | 42         | 2.0        |

### **Summary of Asbestos Analysis Soil Samples**

Our Ref: 12-68454
Client Ref: 26357LG
Contract Title: Albert Street

| Lab No | Sample Ref | Material Type* | Result | Comment | Analyst      |
|--------|------------|----------------|--------|---------|--------------|
| 442908 | WS1 0.40   | Soil           | NAD    | None    | Keith Wilson |
| 442909 | WS1 1.00   | Soil           | NAD    | None    | Keith Wilson |
| 442910 | WS2 0.40   | Soil           | NAD    | None    | Keith Wilson |
| 442911 | WS3 0.50   | Soil           | NAD    | None    | Keith Wilson |
| 442912 | WS4 0.30   | Soil           | NAD    | None    | Keith Wilson |
| 442913 | WS4 0.90   | Soil           | NAD    | None    | Keith Wilson |

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. NAD = No Asbestos Detected. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETS 082 using polarised light microscopy in accordance with HSG248 and documented in-house methods. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'.

### Summary of Chemical Analysis Leachate Samples Our Ref: 12-68454

|                                     |              |                          | Lab No.<br>ample ID<br>Depth<br>mple Ref   | 442914<br>WS1<br>0.40 | 442915<br>WS4<br>0.30 |
|-------------------------------------|--------------|--------------------------|--------------------------------------------|-----------------------|-----------------------|
| Test                                | Units        | Samp                     | nple Type<br>ling Date<br>ling Time<br>LOD | 06/09/2012            | 06/09/2012            |
| NRA Leachate Preparation            |              | DETS 036*                |                                            | Y                     | Υ                     |
| Arsenic, Dissolved                  | ug/l         | DETSC 2306               | 0.16                                       | 0.80                  | 0.80                  |
| Cadmium, Dissolved                  | ug/l         | DETSC 2306               | 0.03                                       | < 0.030               | < 0.030               |
| Chromium III Dissolved              | ug/l         | DETSC 2302*              | 5                                          | < 5.0                 | < 5.0                 |
| Chromium, Dissolved                 | ug/l         | DETSC 2306               | 0.25                                       | < 0.25                | < 0.25                |
| Hexavalent Chromium                 | ug/l         | DETSC 2203               | 10                                         | < 10                  | < 10                  |
| Copper, Dissolved                   | ug/l         | DETSC 2306               | 0.4                                        | < 0.40                | 0.64                  |
| Lead, Dissolved                     | ug/l         | DETSC 2306               | 0.09                                       | < 0.090               | < 0.090               |
| Mercury Dissolved                   | ug/l         | DETSC 2324               | 0.05                                       | < 0.05                | < 0.05                |
| Nickel, Dissolved                   | ug/l         | DETSC 2306<br>DETSC 2306 | 0.5                                        | < 0.50                | < 0.50                |
| Selenium, Dissolved Zinc, Dissolved | ug/l         | DETSC 2306<br>DETSC 2306 | 0.25<br>1.25                               | 1.1<br>1.3            | 1.7<br>< 1.3          |
| Sulphate as SO4                     | ug/l<br>mg/l | DETSC 2055*              | 0.1                                        | 82                    | 16                    |
| Boron                               | ug/l         | DETS 020                 | 100                                        | 310                   | 330                   |
| Cyanide total                       | ug/l         | DETSC 2130               | 40                                         | < 40.0                | < 40.0                |
| Sulphur (free)                      | ug/l         | DETSC 3049               | 90                                         | < 90.0                | < 90.0                |
| Sulphide                            | ug/l         | DETSC 2208               | 10                                         | < 10.0                | < 10.0                |
| Total Organic Carbon                | mg/l         | *                        | 2                                          | < 2.0                 | < 2.0                 |
| pH                                  |              | <b>DETSC 2008</b>        |                                            | 7.8                   | 8.3                   |
| Acenaphthene                        | ug/l         | DETS 074*                | 0.01                                       | < 0.01                | 0.52                  |
| Acenaphthylene                      | ug/l         | DETS 074*                | 0.01                                       | < 0.01                | < 0.01                |
| Anthracene                          | ug/l         | DETS 074*                | 0.01                                       | 0.04                  | 0.91                  |
| Benzo(a)anthracene                  | ug/l         | DETS 074*                | 0.01                                       | 2.3                   | 6.0                   |
| Benzo(a)pyrene                      | ug/l         | DETS 074*                | 0.01                                       | 3.3                   | 7.5                   |
| Benzo(b)fluoranthene                | ug/l         | DETS 074*                | 0.01                                       | 3.6                   | 6.4                   |
| Benzo(k)fluoranthene                | ug/l         | DETS 074*                | 0.01                                       | 1.9                   | 3.5                   |
| Benzo(g,h,i)perylene                | ug/l         | DETS 074*                | 0.01                                       | 2.1                   | 1.7                   |
| Chrysene                            | ug/l         | DETS 074*                | 0.01                                       | 1.6                   | 4.4                   |
| Dibenzo(a,h)anthracene              | ug/l         | DETS 074*                | 0.01                                       | 0.47                  | 1.5                   |
| Fluoranthene<br>Fluorene            | ug/l         | DETS 074*                | 0.01                                       | 4.4                   | 16                    |
|                                     | ug/l         | DETS 074*<br>DETS 074*   | 0.01<br>0.01                               | < 0.01<br>4.2         | 0.09<br>4.7           |
| Indeno(1,2,3-c,d)pyrene Naphthalene | ug/l<br>ug/l | DETS 074*                | 0.01                                       | 0.11                  | 0.24                  |
| Phenanthrene                        | ug/l         | DETS 074*                | 0.01                                       | 0.11                  | 2.0                   |
| Pyrene                              | ug/l         | DETS 074*                | 0.01                                       | 5.1                   | 17                    |
| PAH                                 | ug/l         | DETS 074*                | 0.01                                       | 29                    | 72                    |
| PRO (C6-C10)                        | ug/l         | DETSC 3322               | 1                                          | < 1.0                 | < 1.0                 |
| EPH (C10-C40)                       | ug/l         | DETSC 3311               | 10                                         | 61                    | 260                   |
| Phenol                              | ug/l         | DETS 079*                | 0.5                                        | < 0.50                | < 0.50                |
|                                     |              |                          | •                                          |                       |                       |



#### **Sample Comments**

DETS cannot be held responsible for the integrity of sample(s) received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note "Guidance on Deviating Samples".

All samples received are listed below. However, those samples that have additional comments in relation to hold time and/or inappropriate containers are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations.

If no sampled date (soils) or date/time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters), this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

|         |                   |              |                                                             | Deviating due to holding time being | Deviating due to inappropriate container |
|---------|-------------------|--------------|-------------------------------------------------------------|-------------------------------------|------------------------------------------|
| Lab No. | Sample ID         | Date Sampled | Containers Received                                         | exceeded for test                   | for test                                 |
| 442908  | WS1 0.40 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442909  | WS1 1.00 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442910  | WS2 0.40 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442911  | WS3 0.50 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442912  | WS4 0.30 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442913  | WS4 0.90 SOIL     | 06/09/2012   | Glass Jar 250ml or less, Glass<br>Vial, Plastic Tub 1 litre |                                     |                                          |
| 442914  | WS1 0.40 LEACHATE | 06/09/2012   | Glass Jar 1 litre                                           |                                     |                                          |
| 442915  | WS4 0.30 LEACHATE | 06/09/2012   | Glass Jar 1 litre                                           |                                     |                                          |

**APPENDIX E - STATISTICAL ANALYSIS** 

+

| Back to data                                                                                                                                 | Go to                     | outlier te             | st                        | Go to no                  | ormality te               | st                        | Show i                    | individual                | summarv                   | $\overline{}$             |                           |                           |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Select dataset                                                                                                                               | ОΥ                        | ОΥ                     | ΟY                        | ΟY                        | ΟY                        | ОΥ                        |                           | ОΥ                        | OY                        | O Y                       | Оч                        | Оч                        | Оү                        |
| Result                                                                                                                                       | μ < Cc                    | μ < Cc                 | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ < Cc                    |
| Base decision on:                                                                                                                            | evidence level            | evidence level         | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            | evidence level            |
| Evidence level                                                                                                                               | 100%                      | 100%                   | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      | 100%                      |
| Upper confidence limit (on true mean concentration, µ)                                                                                       | 7.30799856                | 4.57402611             | 0.82595666                | 19.8822698                | 1                         | 31.9698917                | 27.7217494                | 0.025                     | 20.9900973                | 5.09134031                | 124.184372                | 8.19882802                | 1.50575226                |
| t statistic, t <sub>0</sub> (or k <sub>0</sub> )                                                                                             | -54.79860599              | -731.8396922           | -109.7887582              | -10437.27579              | N/A                       | -1065.166573              | -92.63636364              | N/A                       | -38.53621235              | -698.2869789              | -1192.057709              | -21.93472705              | -717.6666667              |
| Test scenario:                                                                                                                               | Planning: is true me      | an lower than critical | l concentration (μ < 0    | Cc)? ▼                    | Evidence                  | e level required:         | 95%                       | Use Normal distribut      | ion to test for outlier   | š 🔻                       |                           |                           |                           |
| Statistical approach                                                                                                                         | Auto: One-sample t-       | Auto: One-sample t     | Auto: One-sample t        | Auto: One-sample t        | Auto: Chebychev           | Auto: One-sample t        | Auto: One-sample t        | Auto: Chebychev           | Auto: One-sample t        | Auto: One-sample t        | Auto: One-sample t        | Auto: Chebychev           | Auto: Chebychev           |
| Distribution                                                                                                                                 | Normal                    | Normal                 | Normal                    | Normal                    | Single value              | Normal                    | Normal                    | Single value              | Normal                    | Normal                    | Normal                    | Non-normal                | Non-normal                |
| Outliers?                                                                                                                                    | No                        | No                     | No                        | No                        | No                        | No                        | No                        | No                        | No                        | No                        | No                        | Yes                       | Yes                       |
| Set non-detect values to:                                                                                                                    | Half detection limit      | Half detection limit   | Half detection limit      | Half detection limit      | Detection limit           | Half detection limit      | Half detection limit      | Half detection limit      | Half detection limit      | Half detection limit      | Half detection limit      | Half detection limit      | Detection limit           |
| Number of non-detects                                                                                                                        | 0                         | 0                      | 0                         | 0                         | 4                         | 0                         | 0                         | 4                         | 0                         | 0                         | 0                         | 0                         | 3                         |
| Standard deviation, s                                                                                                                        | 0.94162979                | 0.78528127             | 0.17078251                | 2.44948974                | 0                         | 7.41057803                | 5.5                       | 0                         | 6.02550136                | 0.99121138                | 28.2016548                | 2.93598365                | 0.45                      |
| Sample mean, $\overline{\chi}$                                                                                                               | 6.2                       | 3.65                   | 0.625                     | 17                        | 1                         | 23.25                     | 21.25                     | 0.025                     | 13.9                      | 3.925                     | 91                        | 1.8                       | 0.525                     |
| Sample size, n                                                                                                                               | 4                         | 4                      | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         | 4                         |
| Notes                                                                                                                                        | Atkins 1% SOM<br>Res With | LQM Res With           | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With |
| Critical concentration, C <sub>c</sub>                                                                                                       | 32                        | 291                    | 10                        | 12800                     | 14.2                      | 3970                      | 276                       | 170                       | 130                       | 350                       | 16900                     | 34                        | 162                       |
| te ref: Albert Street<br>ata description: Made Ground<br>ontaminant(s): Metals<br>set scenario: Planning<br>ate: 30.01.13<br>ser details: DB | (mg/kg)                   | (Soluble)<br>(mg/kg)   | (Total) (mg/kg)           | (mg/kg)                   | (mg/kg)                   | (mg/kg)                   | (mg/kg)                   | (Total) (mg/kg)           | (mg/kg)                   | (Total) (mg/kg)           | (mg/kg)                   | (Total) (mg/kg)           | (Total) (mg/kg)           |
| ent/client ref: Ascent<br>piect ref: 26357LG                                                                                                 | Arsenic (Total)           | Boron                  | Cadmium                   | Chromium III              |                           | Copper (Total)            | Lead (Total)              | Mercury                   | Nickel (Total)            | Selenium                  | Zinc (Total)              | Cyanide                   | Phenols                   |

Go to summary

### Data sheet

Project details

| Easting | Northing | Sample<br>ID | Arsenic<br>(Total) | Boron<br>(Soluble) | Cadmium<br>(Total) | Chromium III | Chromium VI | Copper<br>(Total) | Lead (Total) | Mercury<br>(Total) | Nickel (Total) | Selenium<br>(Total) | Zinc (Total) | Cyanide<br>(Total) | Phenols<br>(Total) |
|---------|----------|--------------|--------------------|--------------------|--------------------|--------------|-------------|-------------------|--------------|--------------------|----------------|---------------------|--------------|--------------------|--------------------|
|         |          |              | mg/kg              | mg/kg              | mg/kg              | mg/kg        | mg/kg       | mg/kg             | mg/kg        | mg/kg              | mg/kg          | mg/kg               | mg/kg        | mg/kg              | mg/kg              |
|         |          |              |                    |                    |                    |              |             |                   |              |                    |                |                     |              |                    |                    |
|         |          | WS1<br>0.40m | 5.8                | 3.5                | 0.7                | 19           | < 1.0       | 33                | 17           | < 0.05             | 22             | 2.8                 | 71           | 6.2                | 1.2                |
|         |          | WS2<br>0.40m | 5.3                | 4.6                | 0.4                | 16           | < 1.0       | 15                | 16           | < 0.05             | 14             | 3.7                 | 63           | 0.2                | < 0.3              |
|         |          | WS3<br>0.50m | 6.2                | 3.8                | 0.6                | 14           | < 1.0       | 22                | 26           | < 0.05             | 7.6            | 5.2                 | 120          | 0.5                | < 0.3              |
|         |          | WS4<br>0.30m | 7.5                | 2.7                | 0.8                | 19           | < 1.0       | 23                | 26           | < 0.05             | 12             | 4                   | 110          | 0.3                | < 0.3              |

| ilient/client ref: Ascent<br>roject ref: 26357LG<br>ite ref: Albert Street<br>itaa description: Made Ground<br>ontaminant(s): PAH | naphthalene<br>(mg/kg)    | acenaphthyle<br>ne (mg/kg) | acenaphthene<br>(mg/kg)   | fluorene<br>(mg/kg)       | phenanthrene<br>(mg/kg) | anthracene<br>(mg/kg)     | fluoranthene<br>(mg/kg)   | pyrene<br>(mg/kg)         | benzo(a)anthr<br>acene (mg/kg) | chrysene<br>(mg/kg)       | benzo(b)fluor<br>anthene<br>(mg/kg) | benzo(k)fluora<br>nthene<br>(mg/kg) | benzo(a)pyren<br>e (mg/kg) | dibenzo(ah)an<br>thracene<br>(mg/kg) | benzo(ghi)per<br>ylene (mg/kg) |                           |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------|---------------------------|---------------------------|-------------------------|---------------------------|---------------------------|---------------------------|--------------------------------|---------------------------|-------------------------------------|-------------------------------------|----------------------------|--------------------------------------|--------------------------------|---------------------------|
| est scenario: Planning<br>late: 30.01.13<br>lser details: DB                                                                      |                           |                            |                           |                           |                         |                           |                           |                           |                                |                           |                                     |                                     |                            |                                      |                                |                           |
| Critical concentration, C <sub>c</sub>                                                                                            | 0.585                     | 170                        | 588                       | 615                       | 92                      | 8270                      | 822                       | 563                       | 4.52                           | 585                       | 7.72                                | 84.4                                | 0.818                      | 0.838                                | 96.2                           | 7.31                      |
| Notes                                                                                                                             | Atkins 1% SOM<br>Res With | LQM 1% SOM Res<br>With     | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With | LQM 1% SOM Res<br>With  | Atkins 1% SOM<br>Res With      | Atkins 1% SOM<br>Res With | Atkins 1% SOM<br>Res With           | Atkins 1% SOM<br>Res With           | Atkins 1% SOM<br>Res With  | Atkins 1% SOM<br>Res With            | Atkins 1% SOM<br>Res With      | Atkins 1% SOM<br>Res With |
| Sample size, n                                                                                                                    | 4                         | 4                          | 4                         | 4                         | 4                       | 4                         | 4                         | 4                         | 4                              | 4                         | 4                                   | 4                                   | 4                          | 4                                    | 4                              | 4                         |
| Sample mean, $\overline{\chi}$                                                                                                    | 0.9                       | 0.875                      | 4.6                       | 5.8                       | 32.475                  | 15.75                     | 116.1                     | 106.9                     | 60.375                         | 61.2                      | 50.575                              | 28.975                              | 65.875                     | 7.375                                | 49.125                         | 50.175                    |
| Standard deviation, s                                                                                                             | 0.4                       | 0.51881275                 | 5.37339123                | 7.22403396                | 40.6690197              | 19.0300639                | 111.733194                | 94.0236141                | 53.5838517                     | 53.4492906                | 45.7360817                          | 24.950668                           | 58.6918152                 | 5.97571474                           | 39.425827                      | 40.880996                 |
| Number of non-detects                                                                                                             | 3                         | 3                          | 1                         | 0                         | 0                       | 0                         | 0                         | 0                         | 0                              | 0                         | 0                                   | 0                                   | 0                          | 0                                    | 0                              | 0                         |
| Set non-detect values to:                                                                                                         | Detection limit           | Detection limit            | Detection limit           | Half detection limit      | Half detection limit    | Half detection limit      | Half detection limit      | Half detection limit      | Half detection limit           | Half detection limit      | Half detection limit                | Half detection limit                | Half detection limit       | Half detection limit                 | Half detection limit           | Half detection limit      |
| Outliers?                                                                                                                         | No                        | No                         | No                        | No                        | No                      | No                        | No                        | No                        | No                             | No                        | No                                  | No                                  | No                         | No                                   | No                             | No                        |
| Distribution                                                                                                                      | Non-normal                | Non-normal                 | Normal                    | Normal                    | Normal                  | Normal                    | Normal                    | Normal                    | Normal                         | Normal                    | Normal                              | Normal                              | Normal                     | Normal                               | Normal                         | Normal                    |
| Statistical approach                                                                                                              | Auto: Chebychev           | Auto: Chebychev            | Auto: One-sample t        | Auto: One-sample t        | Auto: One-sample t      | Auto: One-sample t        | Auto: One-sample t        | Auto: One-sample t        | Auto: One-sample t             | Auto: One-sample t        | Auto: One-sample t                  | Auto: One-sample t                  | Auto: One-sample t         | Auto: One-sample                     | Auto: One-sample t             | Auto: One-sample t        |
| Test scenario:                                                                                                                    | Planning: is true me      | an lower than critical     | concentration (µ < 0      | (c)?                      | Evidence                | level required:           | 95%                       | Use Normal distribu       | ition to test for outlier      | rs 🔻                      |                                     |                                     |                            |                                      |                                |                           |
| t statistic, t <sub>0</sub> (or k <sub>0</sub> )                                                                                  | 1.575                     | -651.9693316               | -217.1440622              | -168.6592293              | -2.927289636            | -867.4957718              | -12.63545727              | -9.701818093              | 2.084769877                    | -19.59988595              | 1.874012746                         | -4.442766824                        | 2.216901959                | 2.187855439                          | -2.388028539                   | 2.097062411               |
| Upper confidence limit (on true mean concentration, µ)                                                                            | 1.77177979                | 2.00572617                 | 10.9227712                | 14.3003887                | 80.329492               | 38.1423283                | 247.574407                | 217.535868                | 123.426139                     | 124.092803                | 104.391811                          | 58.3339949                          | 134.936586                 | 14.4065143                           | 95.5166498                     | 98.2789206                |
| Evidence level                                                                                                                    | 0%                        | 100%                       | 100%                      | 100%                      | 97%                     | 100%                      | 100%                      | 100%                      | 6%                             | 100%                      | 8%                                  | 99%                                 | 6%                         | 6%                                   | 95%                            | 6%                        |
| Base decision on:                                                                                                                 | evidence level            | evidence level             | evidence level            | evidence level            | evidence level          | evidence level            | evidence level            | evidence level            | evidence level                 | evidence level            | evidence level                      | evidence level                      | evidence level             | evidence level                       | evidence level                 | evidence level            |
| Result                                                                                                                            | μ≥ Cc                     | μ < Cc                     | μ < Cc                    | μ < Cc                    | μ < Cc                  | μ < Cc                    | μ < Cc                    | μ < Cc                    | μ ≥ Cc                         | μ < Cc                    | μ ≥ Cc                              | μ < Cc                              | μ≥ Cc                      | μ≥ Cc                                | μ < Cc                         | μ ≥ Cc                    |
| Select dataset                                                                                                                    | OY                        | ΟY                         | ΟY                        | ΟY                        | O Y                     | O Y                       | Y                         | ΟY                        | ΟY                             | O Y                       | O Y                                 | O Y                                 | O Y                        | O Y                                  | O Y                            | O Y                       |
| Back to data                                                                                                                      | Go to                     | outlier te                 | st                        | Go to no                  | rmality te              | st                        | Show i                    | ndividual                 | summary                        |                           |                                     |                                     |                            |                                      |                                |                           |

Go to summary

Data sheet

Project details

pyrene | benzo(a)anth | chrysene | chryse

| Easting | Northing | Sample       | naphthalene | acenaphthyle<br>ne | acenaphthen<br>e | fluorene | phenanthren<br>e | anthracene | fluoranthene | pyrene | benzo(a)anth<br>racene | chrysene | benzo(b)fluora<br>nthene | benzo(k)fluora<br>nthene | benzo(a)pyren<br>e | dibenzo(ah)an<br>thracene | benzo(ghi)per<br>ylene | indeno(123cd)<br>pyrene |
|---------|----------|--------------|-------------|--------------------|------------------|----------|------------------|------------|--------------|--------|------------------------|----------|--------------------------|--------------------------|--------------------|---------------------------|------------------------|-------------------------|
|         |          |              | mg/kg       | mg/kg              | mg/kg            | mg/kg    | mg/kg            | mg/kg      | mg/kg        | mg/kg  | mg/kg                  | mg/kg    | mg/kg                    | mg/kg                    | mg/kg              | mg/kg                     | mg/kg                  | mg/kg                   |
|         |          |              |             |                    |                  |          |                  |            |              |        |                        |          |                          |                          |                    |                           |                        |                         |
|         |          | WS1<br>0.40m | 0.3         | < 0.1              | 0.2              | 0.2      | 0.4              | 0.2        | 2.4          | 2.6    | 1.5                    | 1.8      | 1.3                      | 0.9                      | 1.5                | 0.4                       | 2.5                    | 1.7                     |
|         |          | WS2<br>0.40m | < 1.1       | < 1.1              | 5.1              | 5.8      | 32               | 14         | 92           | 85     | 44                     | 45       | 34                       | 20                       | 43                 | 7.3                       | 41                     | 40                      |
|         |          | WS3<br>0.50m | < 1.1       | < 1.1              | < 1.1            | 1.2      | 7.5              | 5.8        | 100          | 110    | 66                     | 68       | 57                       | 35                       | 79                 | 6.8                       | 55                     | 59                      |
|         |          | WS4<br>0.30m | < 1.1       | 1.2                | 12               | 16       | 90               | 43         | 270          | 230    | 130                    | 130      | 110                      | 60                       | 140                | 15                        | 98                     | 100                     |