1975

Job Title OAKAMOOR

Borehole No.

002

Sample No.

0-0.90 Depth

Soil Description

Symbol	Borehole No.	Sample No.	Depth m	Soil Description	
		A + B		Soft reddish brown SILT and fine SAND	28-31
		C + D		Very soft reddish brown SILT with two	32-35
				- layers of yellow sandy silt	

SPECIMEN AND TEST DETAILS:

A+B C+D

⊠ 38 mm dia x 76 mm

☑ Undisturbed

☐ Remoulded ☐ Recompacted to specified moisture content and

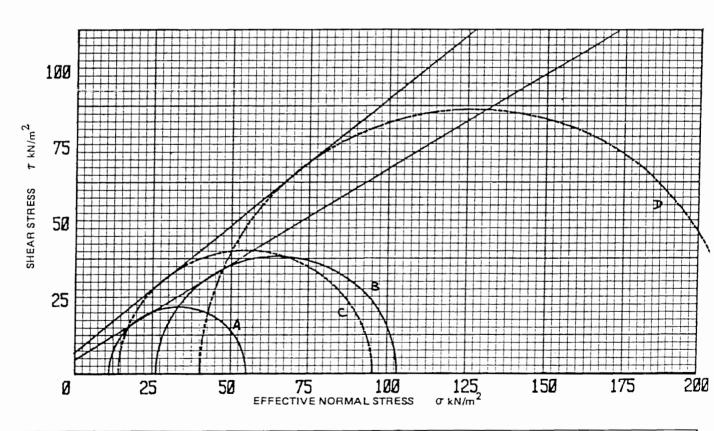
☐ Compacted

Presaturated by back pressure ☐ Undrained

density Consolidated undrained with measured pore pressures

☐ 100 mm dia x 200 mm

☐ Consolidated undrained without measured pore pressures


7 kN/m^2

□ Consolidated drained

Peak strength

☐ Residual strength

☐ Multistage

BINNIE & PARTNERS Geotechnical Laboratory	TRIAXIAL SHEAR TESTS MOHR CIRCLE ENVELOPE			
London SW1	Lab. Ref. No: L184	Tested by:	MAR 81	Fig: 36

1975

JOB THE DAKAMOOR

Borehole No.

002

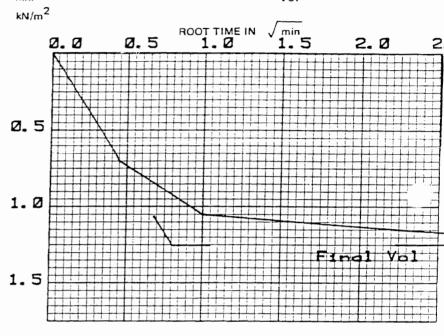
Sample No.

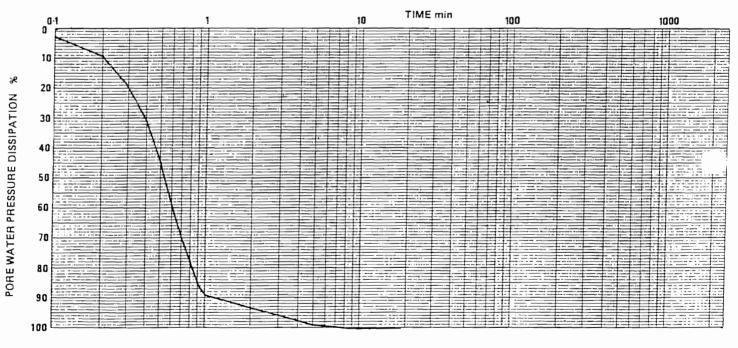
Depth 8,84-9,30

Soft to firm reddish brown Soil Description

silty medium fine SAND

☐ Remoulded ☐ Compacted ☐ Recompacted as specified SPECIMEN: DUndisturbed 12 Without filter drains ☐ Multistage ☐ With filter drains Volumetric strain = $\Delta V/V_0$ = 1.5 % Diameter $= \frac{\Delta V}{V_0} / \Delta \sigma 3' = 4.9 \times 10^{-4} \text{ m}^2$ 76. Ø Length Coefficient of volume change my Drainage path d kN/m² Change in effective stress △σ3'


Coefficients of consolidation and permeability


(a) Root time curve (volume)

= 0.64 ^t100 $= (2.426) d^2/t_{100}$ Cv VOLUME CHANGE △V = 3.1777 v Cv x 10⁻⁷

(b) Log time curve (dissipation)

= 0.54 ^t50 $= (0.20) d^2/t_{50}$ Cv

BINNIE & PARTNERS Geotechnical Laboratory	TRIAXIAL TEST CONSOLIDATION STAGE				
	Lab. Ref. No:	Tested by:	Date:	Fig:	
London SW1	L184	A.M.	MAR 81	37	

1975

JOB THIS DAKAMOOR

Borehole No.

Sample No.

Depth 8.84-9.30

Soft to firm reddish brown

milty medium fine SAND

Final wet density

Final dry density

SPECIMEN: ☐ Undisturbed ☐ Remoulded ☐ Compacted

☐ Recompacted as specified

⊠ 38 mm dia x 76 mm □ 100 mm dia x 200 mm 31 %

Initial wet density Initial dry density Final mositure content

Initial moisture content

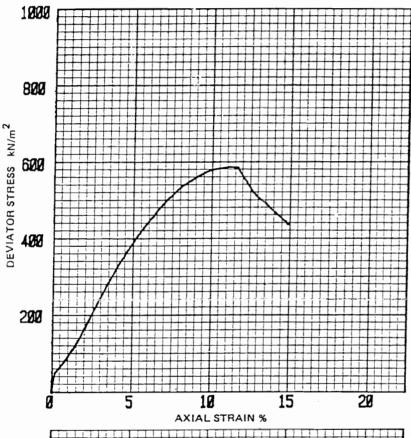
= 1920 kg/m³ $=14600 \text{ kg/m}^3$ 32 %

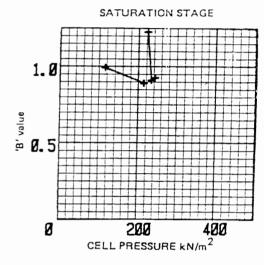
= 1960 kg/m³ = 1480

Initial cell pressure Initial pore pressure Initial effective cell pressure ☐ Multistage

Cell pressure at failure 237 kN/m² 91 kN/m² Pore pressure at failure 146 kN/m²

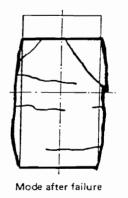
Effective cell pressure at failure Rate of strain


3.6 %/h 11 %


Axial strain at failure Membrane correction Filter drain correction

 3 kN/m^2 – kN/m²

Maximum deviator stress Net maximum deviator stress 592 kN/m²


589 kN/m²

PRESATURATED AT BACK PRESSURE OF: 200 kN/m2

	BINNIE & PARTNERS Geotechnical Laboratory London SW1	CONSOLIDATED UNDRAINED TRIAXIAL SHEAR TEST				
		Lab. Ref. No: L184	Tested by:	MAR 81	Fig: 38	

Borehole No.

*0*02

Sample No.

Depth 8,84-9,30

Soil Description Soft to firm reddish brown silty medium fine SAND

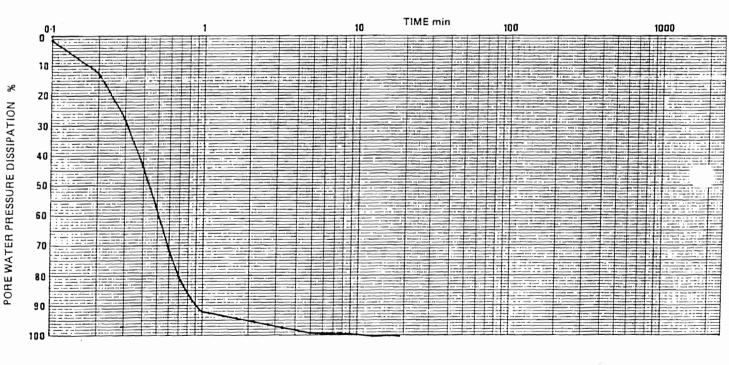
☐ Remoulded ☐ Compacted ☐ Recompacted as specified SPECIMEN: Mundisturbed ☐ With filter drains = 38.0 = 76.0 Volumetric strain = $\Delta V/V_0$ **= 1.7** % Diameter

Length 75.8 Drainage path d

Change in effective stress △σ3'

mm kN/m^2 Coefficient of volume change $m_V = \frac{\Delta V}{V_0} / \Delta \sigma 3' = 2.4 \times 10^{-4}$ m

Coefficients of consolidation and permeability


(a) Root time curve (volume)

$$t_{100}$$
 = 1.2 min
 c_{v} = (0.426) d^{2}/t_{100}
 c_{v} = 2000 m^{2}/y_{1}
 c_{v} = 3.170 c_{v} c_{v}

(b) Log time curve (dissipation)

$$t_{50}$$
 = **0.44** min
 cv = (**0.20**) d^2/t_{50}
 cv = **2600** -7 m^2/v^2
 k = **1.9x10** m/s

Ø.Ø Ø. 5 Ø. 5 1.0 1.5

BINNIE & PARTNERS	TRIAXIAL TEST CONSOLIDATION STAGE			
Geotechnical Laboratory	Lab. Ref. No:	Tested by:	Date:	Fig:
London SW1	L184	A.M.	MAR 81	39

1975

Job Title DAKAMOOR

Borehole No.

002

Sample No.

Depth

8,84-9,30

m

Soil Description Soft to firm reddish brown silty medium fine SAND

SPECIMEN:

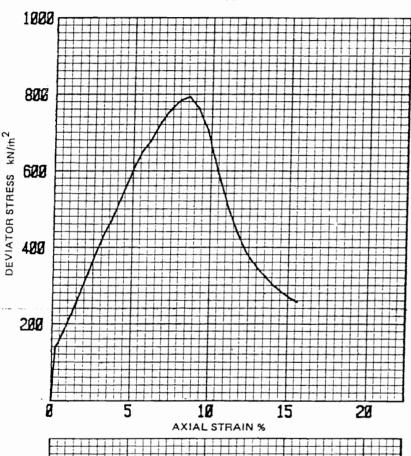
☐ Undisturbed ☐ Remoulded ☐ Compacted ☐ Recompacted as specified

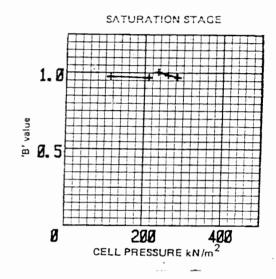
☐ Sa mm dia x 76 mm ☐ 100 mm dia x 200 mm ☐ Multistage

Initial moisture content $= 1940 \, \text{kg/m}^3$ Initial wet density $= 1500 \, \text{kg/m}^3$ Initial dry density 3Ø % Final mositure content $= 1980 \, \text{kg/m}^3$ Final wet density $= 1520 \text{ kg/m}^3$ Final dry density 280 kN/m² Initial cell pressure 200 kN/m² Initial pore pressure kN/m² Initial effective cell pressure

Of Multistage

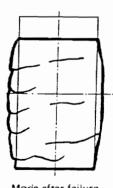
Cell pressure at failure


Pore pressure at failure


= 280 kN/m² = 81 kN/m²

Effective cell pressure at failure = 199 kN/m²
Rate of strain = 3.7 %/h

Axial strain at failure = 8.5%Membrane correction = 2 kN/m^2 Filter drain correction = $-\text{kN/m}^2$


Maximum deviator stress = 796 kN/m^2 Net maximum deviator stress = 794 kN/m^2

PRESATURATED AT BACK PRESSURE OF: 200 kN/m2

Mode after failure

BINNIE & PARTNERS Geotechnical Laboratory	CONSOLIDATED UNDRAINED TRIAXIAL SHEAR TEST			
London SW1	Lab. Ref. No:	Tested by:	Date: MAR 81	Fig: 42

PORE WATER PRESSURE kN/m²

200

100

1975 JOB THIS OAKAMOOR Job Na.

Borehole No.

002

Sample No.

Depth 8.84-9.30

Soil Description Soft to firm reddish brown SILT

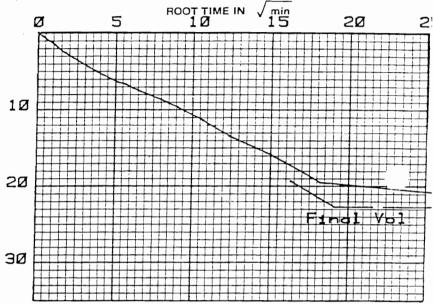
and fine SAND

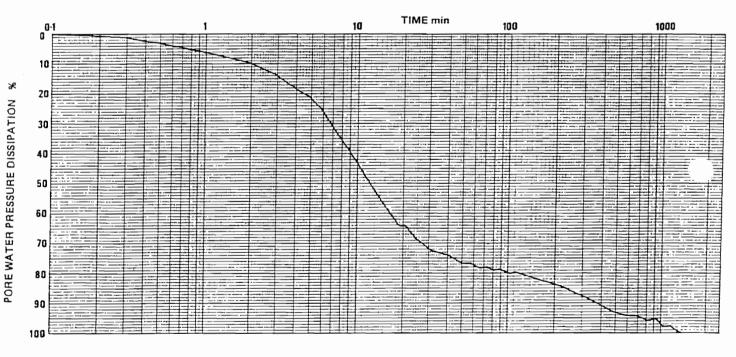
☐ Recompacted as specified SPECIMEN: MUndisturbed ☐ Remoulded □ Compacted ☐ With filter drains 38. Ø 76. Ø 72. 6 Volumetric strain = Δ_{V/V_0} Diameter Coefficient of volume change $m_v = \frac{\Delta v}{v_0} / \Delta \sigma 3' = 2.2 \times 10^{-3} \text{ m}^2$ Length Drainage path d mm

Change in effective stress △σ3'

 kN/m^2

Coefficients of consolidation and permeability


(a) Root time curve (volume)


$$t_{100} = 370$$
 min

 $cv = (0.426) d^2/t_{100}$ %

 $cv = 6.1 m^2/yt$
 $k = 3.177 v cv \times 10^{-7}$
 $k = 4.2 \times 10^{-9} m/s$

(b) Log time curve (dissipation)

BINNIE & PARTNERS	TRIAXIAL TEST CONSOLIDATION STAGE				
Geotechnical Laboratory	Lab. Ref. No:	Tested by:	Date:	Fig:	
London SW1	L184	A. M.	MAR 81	41	

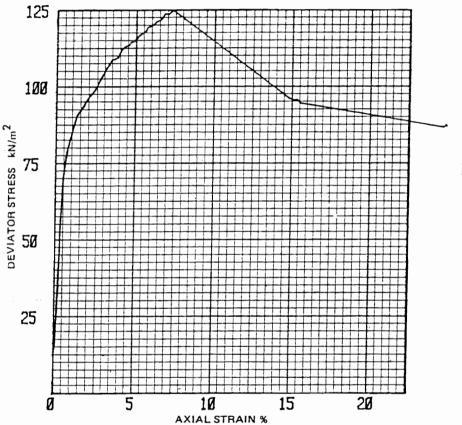
1975

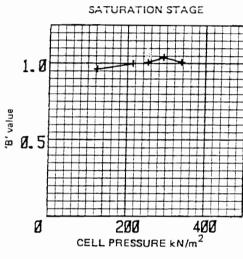
Job Title OAKAMOOR

Borehole No.

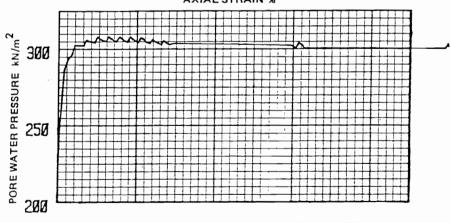
002

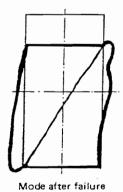
Sample No.


Depth 8,84-9,30


Soil Description Soft to firm reddish brown SILT

and fine SAND


SPECIMEN: SUndisturbed Remoulded Compacted ☐ Recompacted as specified ≝ 38 mm dia x 76 mm □ 100 mm dia x 200 mm □ Multistage


1.1.1	- 51 %	Cell pressure at failure	= 332 kN/n
Initial moisture content		Cen pressure at randre	
Initial wet density	-1690 kg/m ³	Pore pressure at failure	= 304 kN/m
Initial dry density	$= 1120 \text{kg/m}^3$	Effective cell pressure at failure	= 28 kN/n
Final mositure content	= 45 %	Rate of strain	- 0. 5%/h
Final wet density	= 2170 kg/m ³	Axial strain at failure	- 7.4%
Final dry density	$= 1490 \text{kg/m}^3$	Membrane correction	= 2 kN/m
Initial cell pressure	= 332 kN/m ²	Filter drain correction	= - kN/m
Initial pore pressure	$= 215 \text{ kN/m}^2$	Maximum deviator stress	= 125 kN/m
Initial effective cell pressure	$= 117 \text{ kN/m}^2$	Net maximum deviator stress	= 123 kN/m

PRESATURATED AT BACK PRESSURE OF: 200 kN/m2

BINNIE & PARTNERS Geotechnical Laboratory	CONSOLIDATED UNDRAINED TRIAXIAL SHEAR TEST				
London SW1	Lab. Ref. No: L184	Tested by:	Date: MAR 81	Fig: 42	

1975

JOB THE OAKAMOOR

Borehole No.

002

Sample No.

Depth 8,84-9,30

Soil Description Soft to firm reddish brown SILT

and fine SAND

SPECIMEN: ID Undisturbed ☐ Remoulded ☐ With filter drains

☐ Recompacted as specified

Diameter

38.0

Volumetric strain = $\Delta V/_{Vo}$ = 27.6 %

5

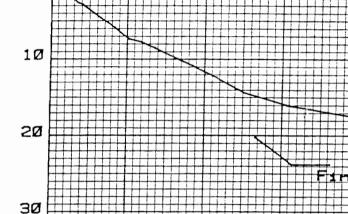
Length

76. Ø

Drainage path d

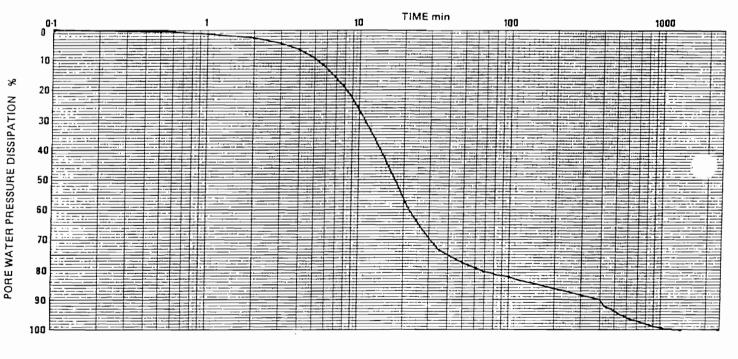
20

Change in effective stress △o3'


 kN/m^2

Coefficient of volume change $m_v = \frac{\Delta v}{v_0} / \Delta \sigma 3' = 1.5 \times 10^{-3} \text{ m}^2$

Coefficients of consolidation and permeability


(a) Root time curve (volume)

$$t_{100} = 250$$
 min
 $cv = (0.426) d^2/t_{100}$ E
 $cv = 9.0 m^2/yr$ d^2/yr d^2/y d

(b) Log time curve (dissipation)

$$t_{50}$$
 = 18 min
 c_{V} = (0, 20) d^{2}/t_{50}
 c_{V} = 59 m^{2}/y_{T}
 d^{2}/t_{50}
 d^{2}/t_{50}

BINNIE & PARTNERS	TRIAXIAL TEST CONSOLIDATION STAGE				
Geotechnical Laboratory	Lab. Ref. No:	Tested by:	Data:	Fig:	
London SW1	L184	A.M.	MAR 81	43	

Job No. 1975

Job Title OAKAMOOR

Borehole No. 002

Sample No. 0 Depth 8.84-9.30

Soil Description Soft to firm reddish brown SILT

and fine SAND **☎** Undisturbed ☐ Remoulded ☐ Compacted ☐ Recompacted as specified SPECIMEN: ⊠38 mm dia x 76 mm □ 100 mm dia x 200 mm ☐ Multistage 405 kN/m² 44 % Cell pressure at failure Initial moisture content 358 kN/m² $= 1800 \, \text{kg/m}^3$ Pore pressure at failure Initial wet density $= 1250 \text{ kg/m}^3$ 47 kN/m^2 Effective cell pressure at failure Initial dry density Ø. 5 %/h 40 % Rate of strain Final mositure content 2350 kg/m³ 7.2% Final wet density Axial strain at failure 168Ø kg/m³ 2 kN/m^2 Membrane correction Final dry density $- kN/m^2$ 405 kN/m2 Filter drain correction Initial cell pressure 197 kN/m^2 211 kN/m² Maximum deviator stress Initial pore pressure 194 kN/m² 195 kN/m² Initial effective cell pressure Net maximum deviator stress 250 SATURATION STAGE 200 DEVIATOR STRESS kN/m² 8, value **9.** 5 150 100 Ø CELL PRESSURE kN/m 50 PRESATURATED AT BACK PRESSURE 200 kN/m2 10 AXIAL STRAIN % PORE WATER PRESSURE KN/m² 400 300 Mode after failure

BINNIE & PARTNERS Geotechnical Laboratory	CONSOLIDATED UNDRAINED TRIAXIAL SHEAR TEST				
London SW1	Lab. Ref. No: L184	Tested by:	MAR 81	Fig: 44	

200

1975

Job Title OAKAMOOR

Borehole No.

Sample No.

Depth

8,84-9,30

Soil Description Soft to firm reddish brown

Symbol	Borehole No.	Sample No.	Depth m	Soil Description	Fig. Ref.
		A + B		silty medium fine SAND	37-40
		C + D	.`	SILT and fine SAND	41-44
		_			

SPECIMEN AND TEST DETAILS:

38 mm dia x 76 mm

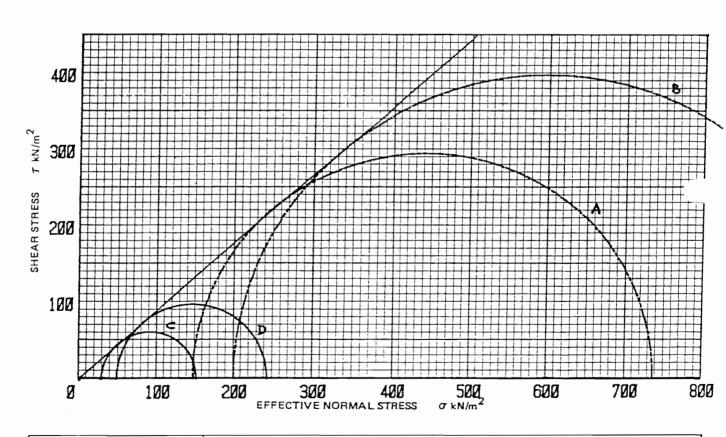
▼ Undisturbed

□ Remoulded ☐ Recompacted to specified moisture content and

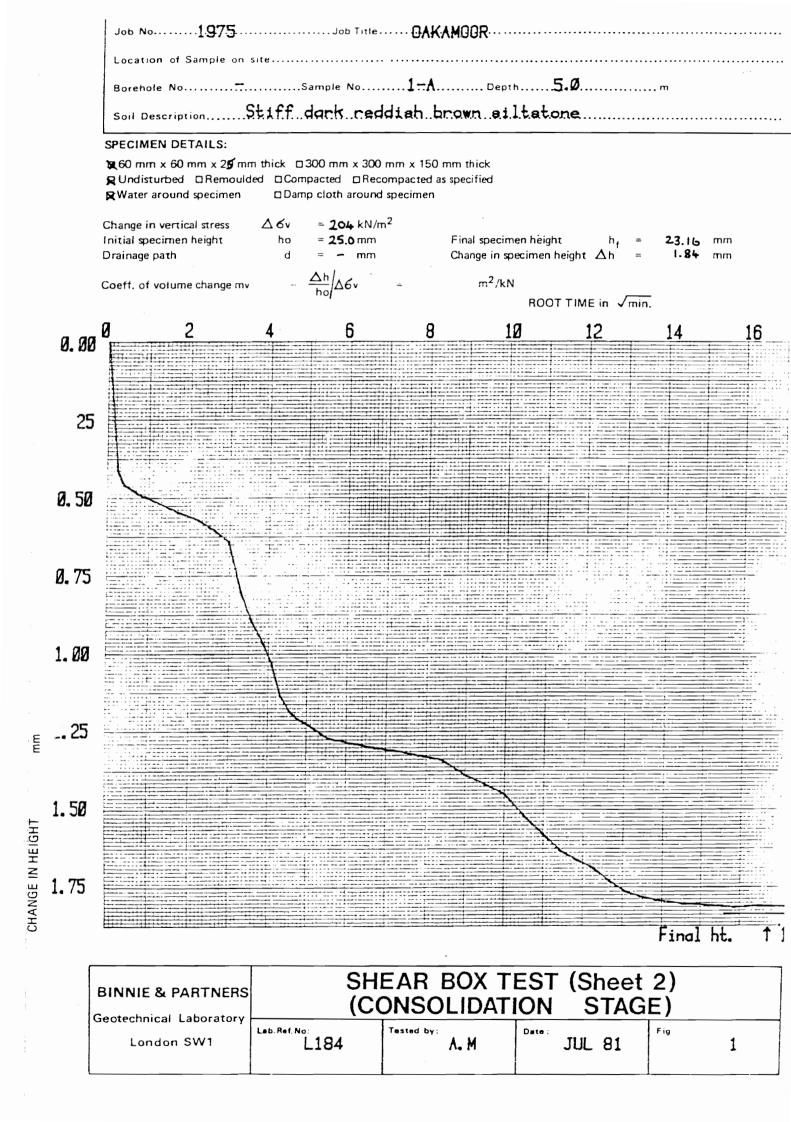
☐ 100 mm dia x 200 mm

☐ Compacted

Presaturated by back pressure ☐ Undrained


density **X** Consolidated undrained with measured pore pressures

kN/m²


☐ Consolidated drained 2 Peak strength

☐ Consolidated undrained without measured pore pressures ☐ Residual strength

☐ Multistage

BINNIE & PART	NENS	TRIAXIAL S MOHR CIRCL			
London SW1	Lab. Ref. No:	Tested by:	Date: MAR 81	Fig: 45	

To: A.L. Little
Alliance House

B & P 11.8.81

From:

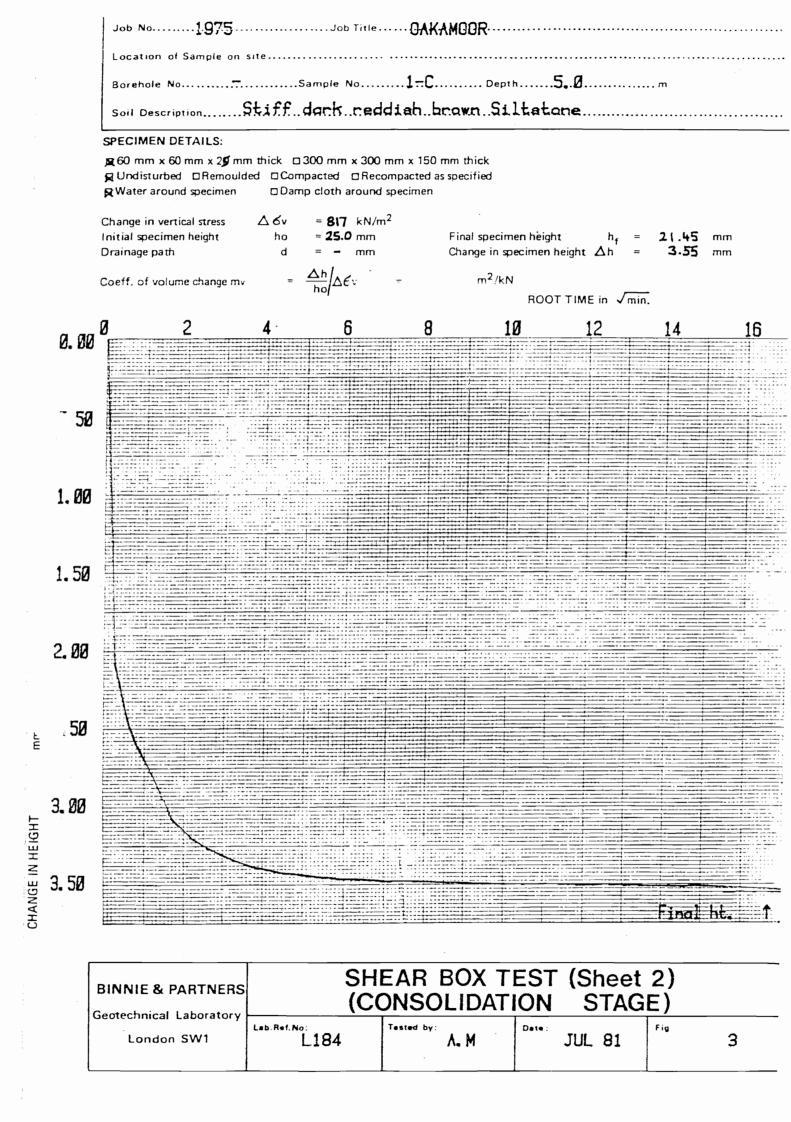
Geotechnical Laboratory

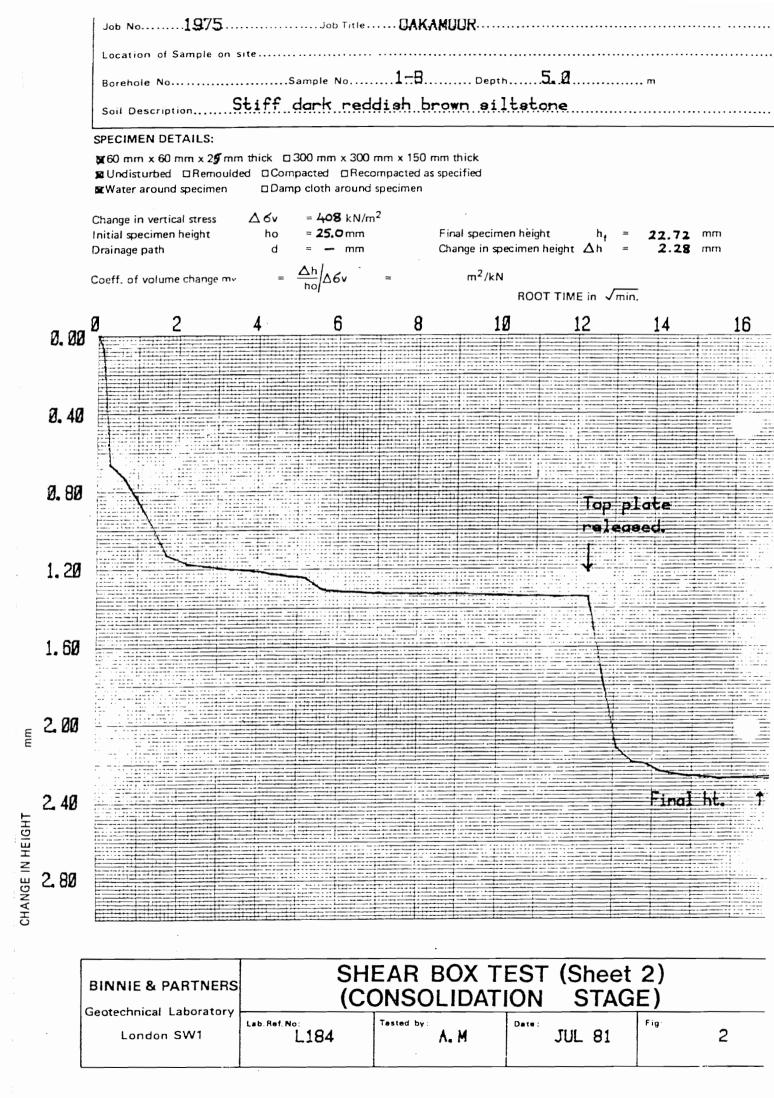
Hide Place

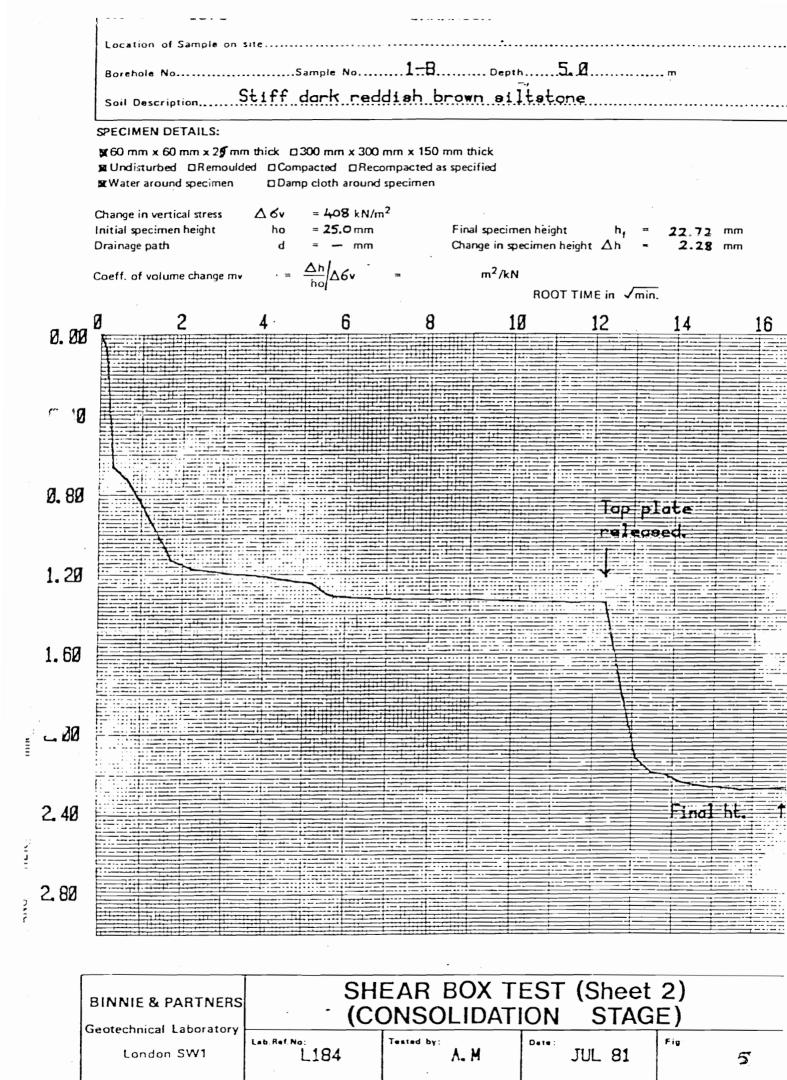
Job 1975: OAKAMOOR - SHEAR BOX TESTS

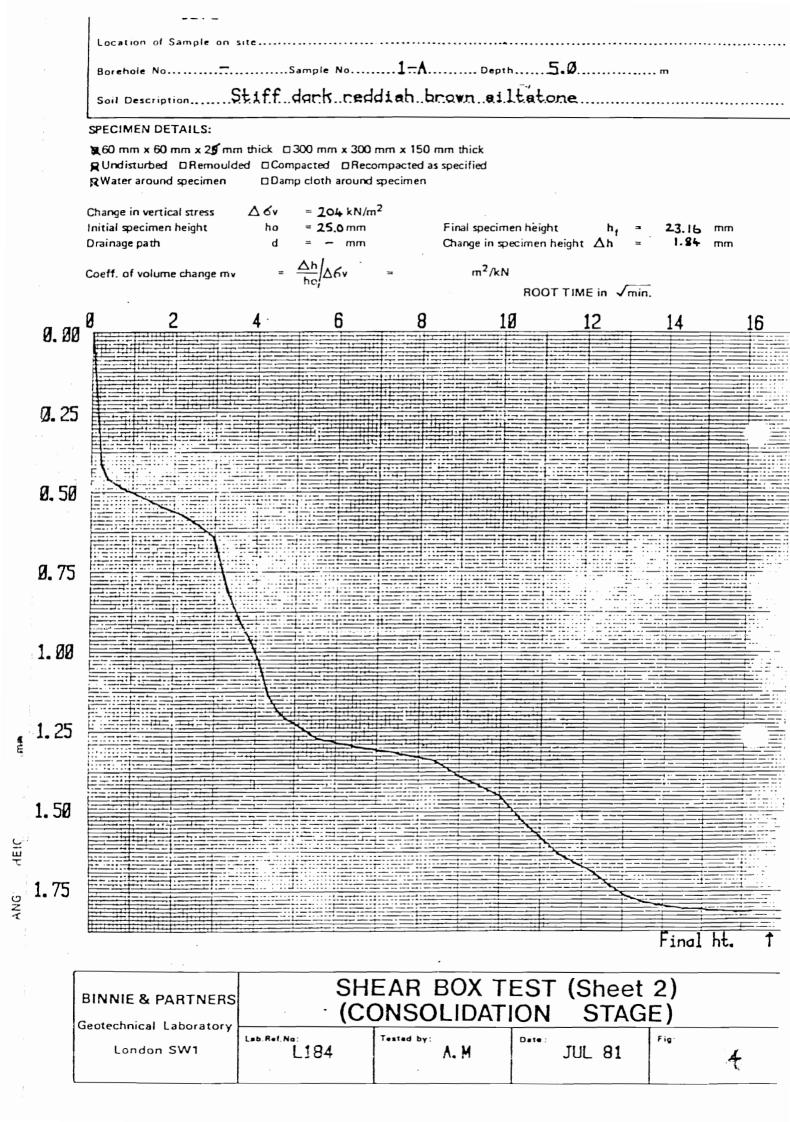
The results of the shear box tests carried out on three samples cut from an undisturbed block are enclosed in Figs. 1 - 10.

Moisture content of block - near to samples = 11% (Moisture content of softer material at base of block = 21%)

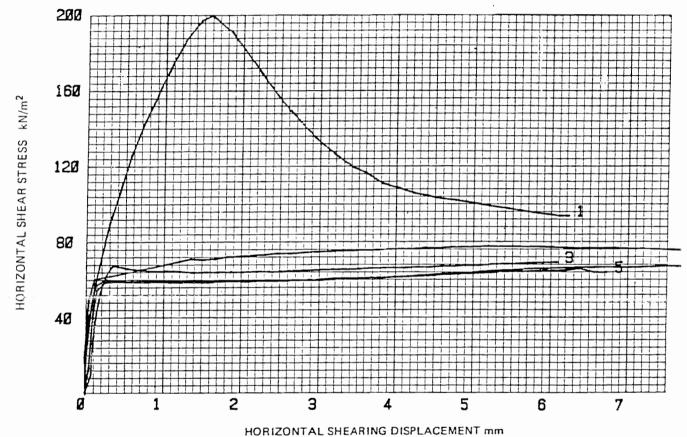

The initial bulk densities of the three samples were:-

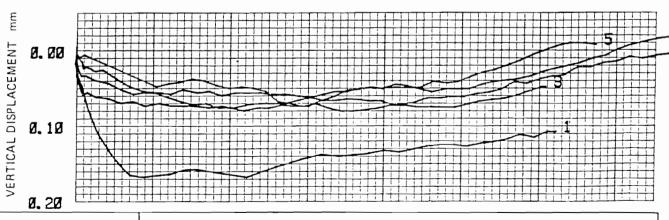

BULK DENSITY	MPLE	SAI
2350 kg/m^3	- A	1
2340 kg/m ³	- B	1
2270 kg/m ³	- C	1


Notes: -

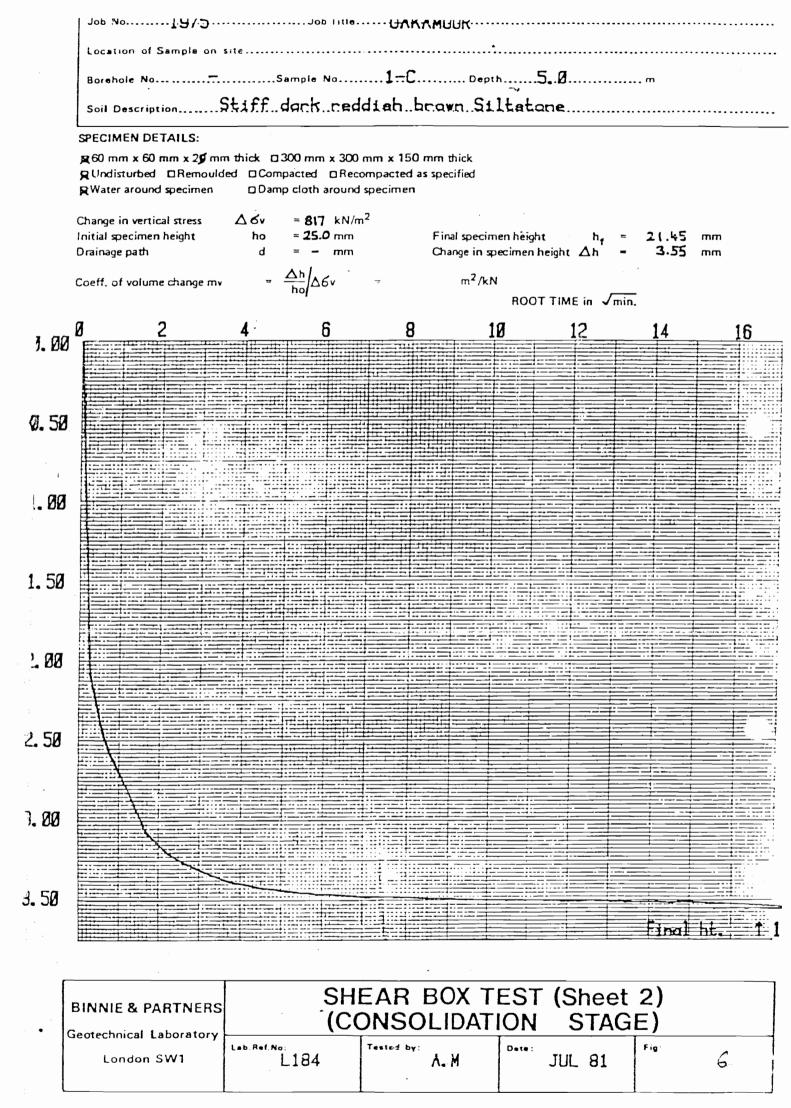

- (1) In the consolidation stage of sample 1 B the top plate was observed to be caught on the top of the shear box. The sample continued consolidating after the top plate was released.
- (2) In the successive shear stages of sample 1 C it was noticed that the shear stress after the 3rd stage appeared to continue to decrease whereas samples 1 A and 1-B had reached their residual values. After the 9th shear stage it was noticed for sample 1 C that the loading beam was resting on a setting stop which probably occurred during the 3rd stage. For the 10th, 11th and 12th shear stages the stop was retracted so that the full normal stress was re-applied to the specimen. This brough about a further consolidation and a marked increase in residual shear stress which was similar for the 11th and 12th shear stages. This value was plotted with those of 1-A and 1-B after the 9th shear stage to give the envelope as 9 in fig. 14.

H√ Mws. AN James



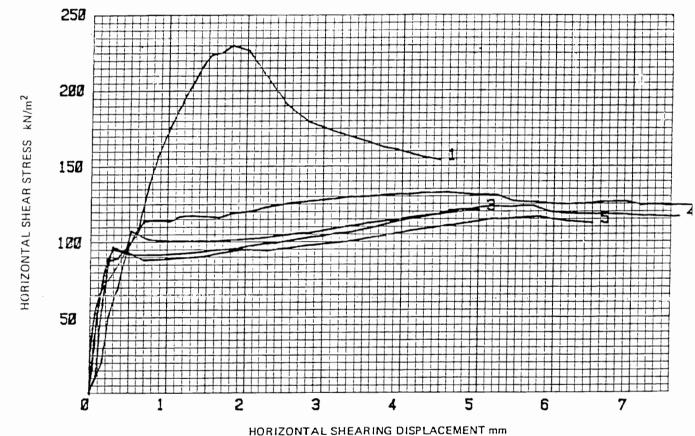

	Job No	ob Title		
Ì	Location of Sample on site			
ļ	Borehole NoSample	1-A	5	
ı	Soil Description.			
L				

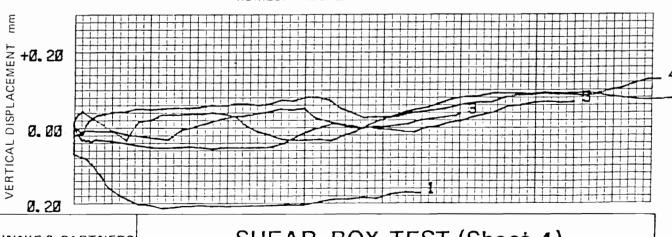
■60 mm x 60 mm x 2∮ mm thick □300 mm x 300 mm x 150 mm thick


■Undisturbed □Remoulded □Compacted □Recompacted as specified
□Undrained □Consolidated-undrained ■Consolidated-drained

Test No.		1	2	3	4	5
Applied normal stress	kN/m ²	2Ø4	204	2Ø4	204	2014
Consolidated Vol. change	percent					
Initial bulk density	kg/m ³					
Initial moisture content	percent					
Rate of strain	mm/min	0.0163	Ø. Ø163	0.0163	0.0163	0.0163

BINNIE & PARTNERS		EAR BOX	ΓEST (Shee	t 4)
Geotechnical Laboratory London SW1	Lab.Ref.No:	Tested by:	JUL 81	Fig F7




Job NoJob Title			
Location of Sample on site			
Borehole NoSample No	1-B	5 . Ø	
Stiff dark reddish Soil Description			
Soil Description			

■60 mm x 60 mm x 25 mm thick □ 300 mm x 300 mm x 150 mm thick

Undisturbed □ Remoulded □ Compacted □ Recompacted as specified
□ Undrained □ Consolidated-undrained □ ■Consolidated-drained

Test No.		1	2	3	4	5
Applied normal stress	kN/m ²	4Ø8	4Ø8	408	4Ø8	408
Consolidated Vol. change	percent					
Initial bulk density	kg/m ³					
Initial moisture content	percent					
Rate of strain	mm/min	0.0163	0.0163	0.0163	0.0163	0.0163

SHEAR BOX TEST (Sheet 4)

Geotechnical Laboratory
London SW1

Lab.Ref.No:
L184

A.M

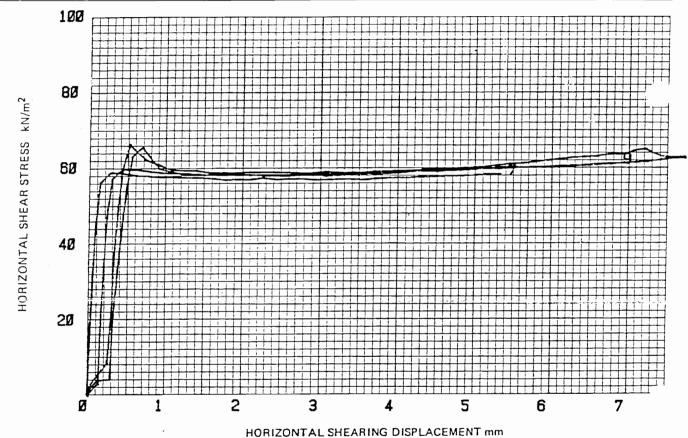
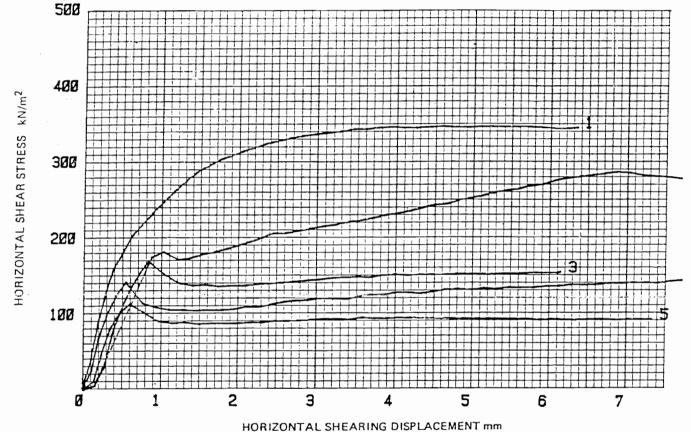

JUL 81

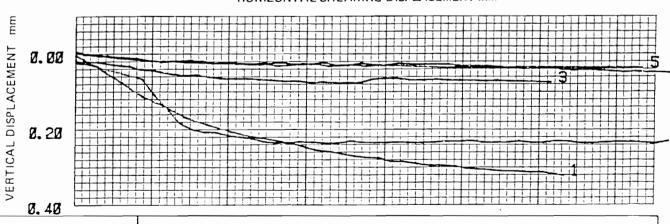

Fig:

9

	•				
Location of Sample on site Borehole No					
	dark reddieh	brown	eiltetone		

Test No.		6	7	8	9	
Applied normal stress	kN/m²	204	204	204	204	
Consolidated Vol. change	percent					
Initial bulk density	kg/m ³					
Initial moisture content	percent					
Rate of strain	mm/min	Ø. Ø163	Ø. Ø163	0. 0163	Ø. Ø163	

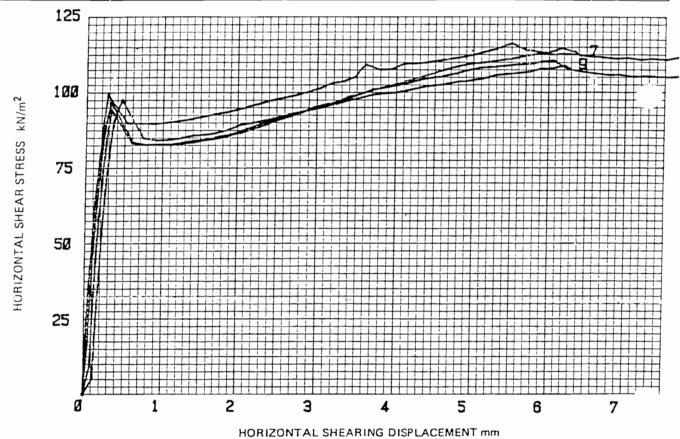


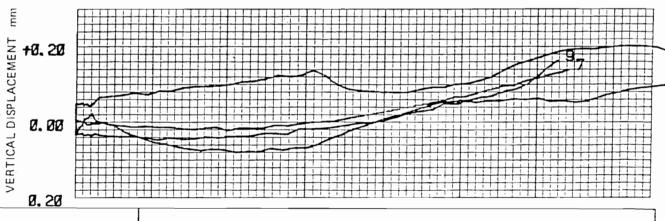

BINNIE & PARTNERS		: SH	EAR BOX	TEST (Sheet	t 4)
	•	Lab.Ref.No:	Tested by:	Date:	Fig:
	London SW1	L184	A. M	JUL 81	8

Job No		Job Title		•••••	
				5. Ø	m
	Stiff do	ark reddieh	brown Sil	tatone	••••••••••

₩60 mm x 60 mm x 20 mm thick □ 300 mm x 300 mm x 150 mm thick **#**Undisturbed □Remoulded □Compacted □Recompacted as specified DConsolidated-undrained

Test No.		1	2	3	4	5
Applied normal stress	kN/m²	817	817	<817?	<817?	<817?
Consolidated Vol. change	percent				_	
Initial bulk density	kg/m ³					
Initial moisture content	percent					
Rate of strain	mm/min	Ø. Ø163	0.0163	0.0163	0.0163	0.0163



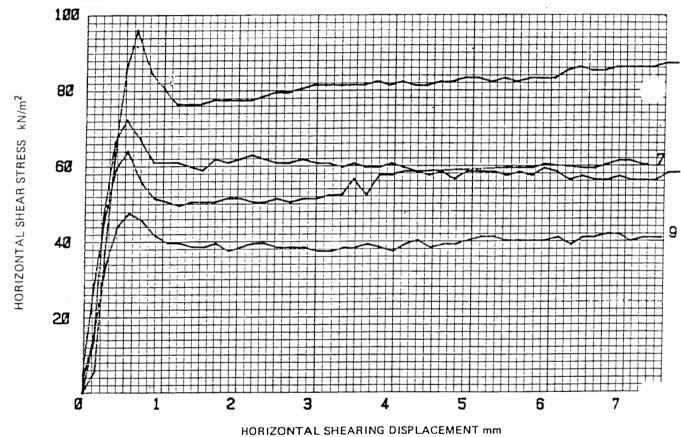

SHEAR BOX TEST (Sheet 4) **BINNIE & PARTNERS** Geotechnical Laboratory Fig Lab.Ref.No: Tested by: Date: London SW1 $H_{\mathcal{L}}$ JUL 81 L184 A. M

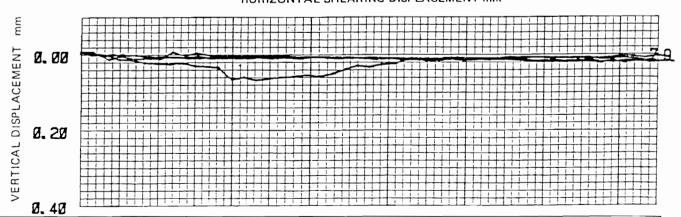
Job No	Job Title		
· ·	1-B Sample No		
Stiff d	dark reddish brown eiltst	one	

■60 mm x 60 mm x 25 mm thick □ 300 mm x 300 mm x 150 mm thick ☐Undisturbed □Remoulded □Compacted □Recompacted as specified □Undrained □Consolidated-undrained ■Consolidated-drained

Test No.		6	7	8	9	T
Applied normal stress	kN/m²	4Ø8	4Ø8	408	408	
Consolidated Vol. change	percent					
Initial bulk density	kg/m³					
Initial moisture content	percent			-		
Rate of strain	mm/min	0.0163	0.0163	Ø. Ø163	0.0163	

BINNIE & PARTNERS Geotechnical Laboratory	SH	EAR BOX	ΓEST (Shee	t 4)
London SW1	Lab. Ref. No:	Tested by:	Date:	Fig:
	L184	A_M	JUL 81	10


Job No				Job Ti	tle								•		· • • •
Location	of S	ample on site				1			•••••			•••••	• • • • • • • • •	•••••	••••
Borehole	No		s	ample No.			, 	Dep	th	Э . и	! 	m		- *	
Soil Desc	ripti	Stiff	dari	k r e ddi	•h b	rowr	•il	tetor	1						
SPECIMEN	ANE	TEST DETA	ILS:						_						
≌ 60 mm x	60 n	nm x 2 mm th	nick 🗆	300 mm x :	300 mm	x 15	0 mm th	nick							
		□Remoulded						ified							
□Undraine	d	□Consolidate	d-undrai	ned 🚚	Consoli	dated-	drained								
Test No.							Ø	. 1	1		12	T			
Applied nor	mals	tress		kN/m ²		_ 81	7	8:	17	8	317				
Consolidated	oV b	l. change		percent											
Initial bulk o	densi	ty		kg/m ³							_				\neg
Initial moist	ure c	ontent		percent											
Rate of strai	n			mm/min		Ø. Ø	1163	Ø. Ø	3163	Ø.	Ø163				
2	5Ø								• • • • • •						
_					+++	+++	++++		1 + + + + +			11111			##
															\coprod
						Ш									\boxplus
2	0 0					##									
/m ²					Ш										
Z Z					4			###					###	 	\mathbb{H}
SS															
H 15	50				1111			###						+++++	H
ST	-														\boxplus
EAF						###									H
SH															
₹ 10	Ø					+++	1111			 		++++	####		H
HORIZONTAL SHEAR STRESS KN/m²															
1120									1111						
0	[
5	7														
	Į								1111	###		###			\pm
	-														\pm
	1				++++				+++	###					\pm
	Ø	1		2		3	Ш	4		5		6		7	
				н	ORIZO	NTAL	SHEAR	RING D	ISPLAC	EME	MT mm		$ \wedge $		
m m	Г		TIII		ПП	TIT						$\lambda /$			
															#\
× 0.00	3														∄ `
W.	ŧ			# 444									####		Ħ
ERTICAL DISPLACEMENT								++++							
SPL	-		+				1111	###		##			7711		-
<u> </u>	9 E						74	111						11	
SAL															
TIC															
/EA						++++									


E 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				
BINNIE & PARTNERS Geotechnical Laboratory	SI	HEAR BO	X TEST (She	et 4)
London SW1	Lab.Ref.No;	Tested by:	Date:	Fig.
Condon SW1	L184	V. H	AUG 81	/3

Job No	Job Title				• • • • • • •
					· · · · · · · ·
			5. Ø	m	
Soil Description	iff dark reddie	h brown Sil	tetone		

₩60 mm x 60 mm x 24 mm thick □ 300 mm x 300 mm x 150 mm thick **∆**Undisturbed □Remoulded □Compacted □Recompacted as specified Undrained □Consolidated-undrained

Test No.		6	7	8	9	
Applied normal stress	kN/m²	<817?	<817?	<817?	<817?	
Consolidated Vol. change	percent					
Initial bulk density	kg/m ³					
Initial moisture content	percent					
Rate of strain	mm/min	Ø. Ø163	0.0163	0.0163	0.0163	

BINNIE & PARTNERS	s SH	EAR BOX	ΓEST (Shee	t 4)
Geotechnical Laboratory London SW1	Lab.Ref.No:	Tested by:	Date:	Fig:
	L184	A- H	JUL 81	12

Job No. 1975 Job Title	OAKAMOOR
Borehole NoSample No	5.0 m
Soil Description Stiff reddish brown	siltstone
•	

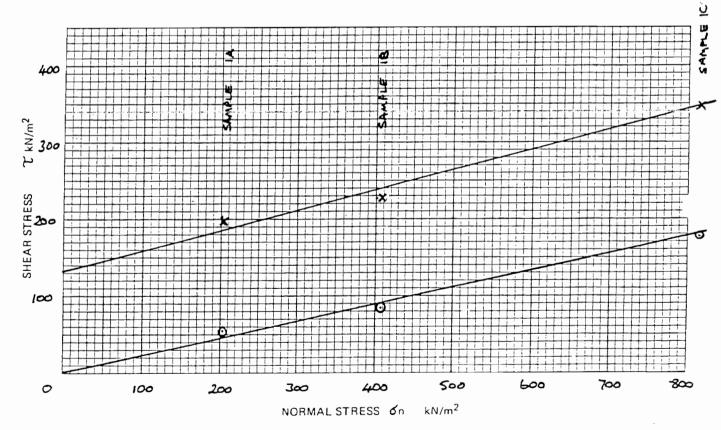
Symbol	Borehole No.	Sample No.	Depth m	Soil Description

≰60 mm x 60 mm x 2**∮** mm thick □ 300 mm x 300 mm x 150 mm thick

XUndisturbed □Remoulded □Compacted

□ Recompacted to specified density and water content

☐ Consolidated-undrained ☐ Undrained


Peak strength ☐ Residual strength

- 0

..... stress reversal cycles: -

1 C - twelve

RESIDUAL STRENGTH

BINNIE & PARTNERS	F	SHEAR BO	OX TESTS ENVELOPE	
Geotechnical Laboratory London SW1	Lab.Ref.No:	Tested by: A.M.	Jul 81	14 14

APPENDIX D - CHEMICAL TEST RESULTS

BINNIE & PARTNERS WESTMINSTER LONDON, S.W.1 Subject Soil Analysis Job Oakamoor Job No. 1975 Datel 3.3.81 Page 1 of 1 pages

Report No. 81/193-6

Four composite samples were taken from core samples on 9.3.81

		Borehole No.	2	Borehole 1 Sample 2
	0 - 0.60	1 10.04-10.50	1 0 - 0.60	1.52-2.52
	red material	red material	I .	white
Sample labelled	icu masur==		material	material
Moisture Content - dried at 80°C	44.62	21.04	58.95	48.84
${\it Z}$ Loss on heating at 105 $^{\circ}$ C	1.88	0.07	2.94	3.33
105 - 180°C	0.62	0.06	1.14	0.98
180 - 600°C	6.81	0.62	6.24	4.78
600 - 1000°C	9.06	0.85	11.36	3.87
•				
Analysis of material dried at 80°C				
Acid Insoluble (siliceous)			05.03	58.76
material %	64.98	95.97	25.82	12.88
Calcium as CaO % dry weight	6.82	0.71	20.77	
Iron as Fe ₂ 0 ₃ %	6.18	0.89	5.30	3.24
Aluminium as Al ₂ 0 ₃ %	2.35	0.24	4.45	1.23
Sulphate as SO ₃ %	9.11	0.23	24.20	14.59
Magnesium as MgO mg/kg dry wt.	2030	310	2130	2355
	3110	485	9150	770
rianganese as into	63	<u>1</u> 1	108	44
Chromium as Cr ₂ O ₃	51	6	72	32
Zinc as ZnO	29	10 .*	62	18
Lead as PbO		12	62	32
Copper as CuO ·	30	0.8	4.7	2.0
Cadmium as CdO	1.8		510	510
Sodium as Na ₂ O ·	195	160	995	1370
Potassium as K ₂ 0 ·	1500	455	フプノ 	13.0

The core sample labelled Borehole 2,0-0.6 m did not contain any discrete white material as found in Borehole 1, Sample 2. Striations of off-white creamy material were present and a sample of this was analysed.

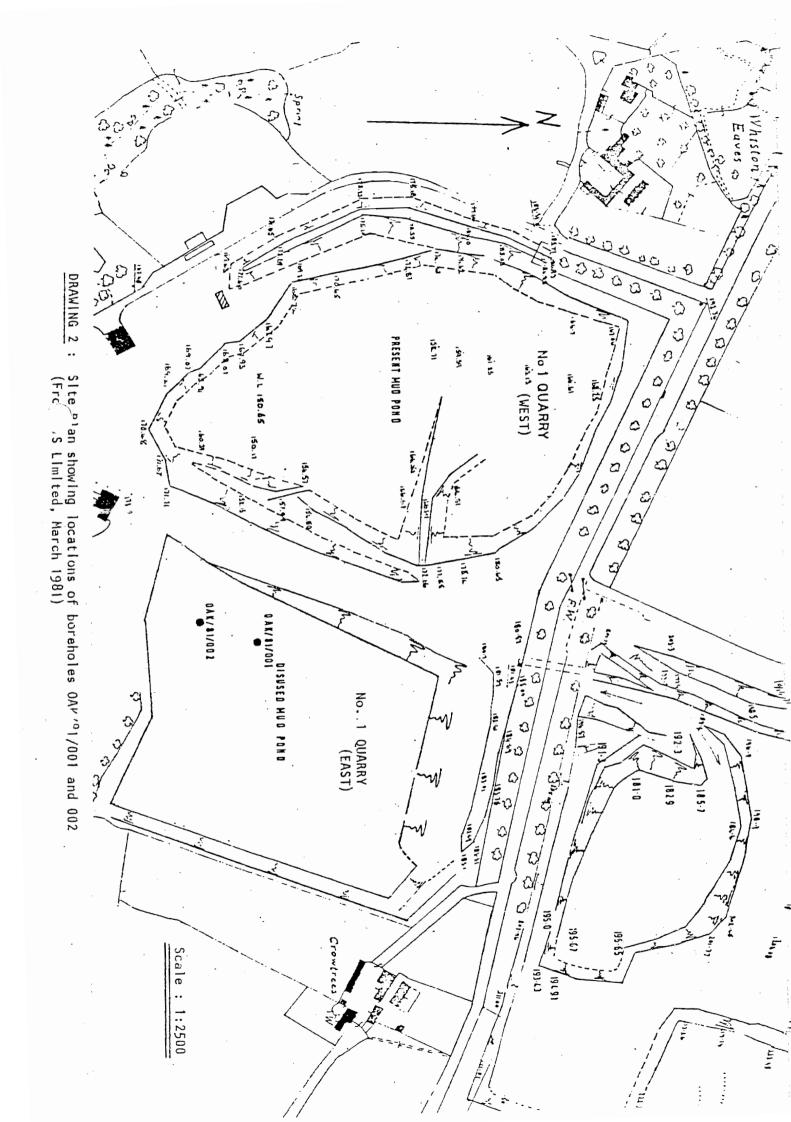


Table 11.4 Water Quality Data

Determinand	BH950011	Stream	Units
рH	6.2	7.0	-
Alkalinity	45	44	mg/l as CaCO ₃
EC	370	360	uS/cm
Sodium	36	24	mg/l
Calcium	31	38	mg/l
Magnesium	1.4	3.6	mg/l
Chloride	49	43	mg/l
Sulphate	52	40	mg/l
Iron	0.09	<0.04	mg/l
Manganese	0.27	0.03	mg/l
Nitrate	4.3	5.8	mg/l as N

11.1.36 A baseline water sampling exercise was undertaken in 1998/1999, and included 12 monthly sampling rounds. Water quality data were collected from streams A, B and C (Figure 11.3) to define the baseline chemistry in the surface waters, in order to appropriately constrain the quality of augmentation flows. The methodology and scope of the sampling exercise was agreed with the Environment Agency at the time. Results are summarised in Table 11.5 below.

Table 11.5 Summary of Water Quality Data

Parameter	Stream A			Stream B		Stream C			
	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Temp (°c)	6.7	9.6	11.8	6.0	9.6	12.4	7.0	9.8	12.4
Ph	6.8	7.2	7.7	6.7	7.2	7.7	6.9	7.3	7.7
DO(%)	88.0	91.9	95.1	90.7	93.4	95.6	86.2	91.8	95.8
DO	9.6	10.5	11.6	9.6	10.7	11.6	9.6	10.4	11.1
TDS	134	160	189	157	202	244	102	134	154
EC (us/cm)	246	311	360	381	394	420	190	252	299
Susp sols	5.0	24.3	53.0	4.0	10.8	20.0	2.0	47.5	244.0
BOD (mg/l O)	1.5	1.5	1.5	1.7	1.7	1.7		<1.4	
Ammonia NH ₄		<0.1			<0.1	0.2		<0.1	
Chloride	19.0	21.8	24.0	29.0	40.2	63.0	18.0	20.8	23.0
Sulphate	28.0	32.0	38.0	34.0	37.2	41.0	27.0	31.0	35.0
Nitrate	19.0	24.2	29.0	18.0	20.0	24.0	15.0	16.8	19.0
Alk (HCO3)	55.0	79.2	128.0	67.0	95.4	201.0	30.0	57.6	137.0
Calcium	27.0	33.8	38.0	30.0	39.4	47.0	21.0	26.2	31.0
Magnesium	2.7	3.7	5.4	2.6	3.6	4.3	1.5	2.1	2.7
Iron	0.01	0.02	0.03	0.01	0.05	0.07	0.04	0.06	0.08
Manganese	0.02	0.09	0.24	0.01	0.03	0.04	0.01	0.01	0.01
Cadmium		<0.005			<0.005			<0.005	
Chromium		<0.01			<0.01			<0.01	
Copper		<0.01			<0.01	0.01		<0.01	
Nickel		<0.01			<0.01	0.02		<0.01	
Lead		<0.01			<0.01			<0.01	
Zinc	0.50	0.50	0.50	0.56	0.56	0.56	0.41	0.41	0.41

All data in mg/l unless stated otherwise

EC: Electrical Conductivity

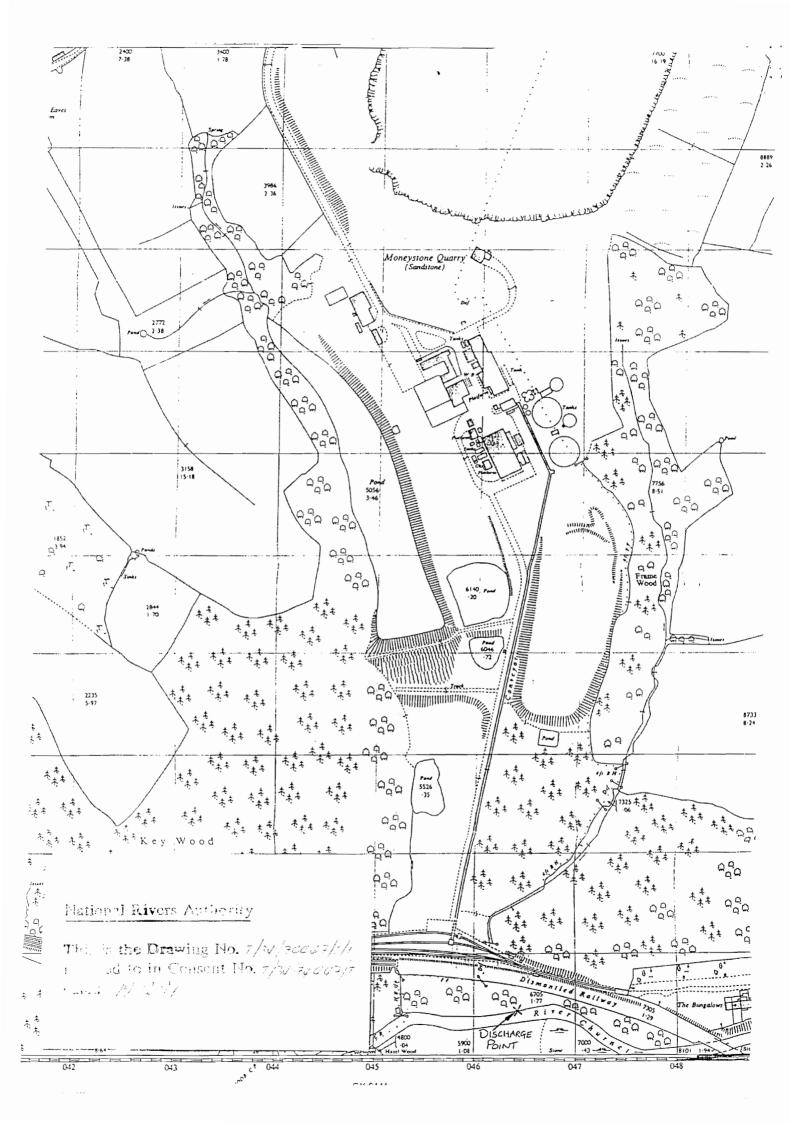
Temp: Water Temperature

Susp Sols: Suspended Solids

DO: Dissolved Oxygen

Biological Oxygen Demand

TDS: Total Dissolved Solids

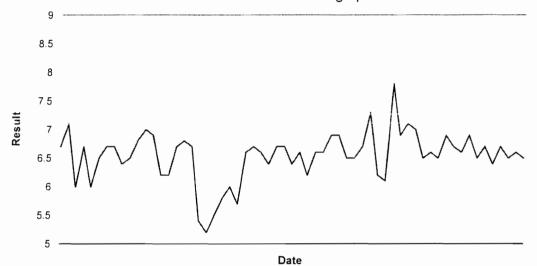

Alk (HCO₃): Alkalinity as HCO₃

BOD:

Potential Receptors

Site of Special Scientific Interest (SSSI)

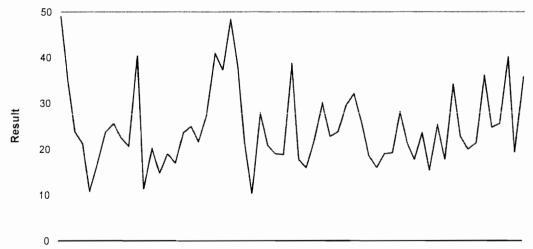
11.1.37 There is a SSSI located to the south west of the permitted quarry area, as shown in Figure 11.3. This forms part of Whiston Eaves SSSI, which predominantly comprises a series of species-rich meadows managed as grazing pasture or hay meadows with additional areas of rush pasture, scrub and running water. The topography is varied and there is a range of soils of variable drainage and nutrient status. The majority of this area is directly underlain by Coal Measures strata, and therefore the impacts of



Quarterly Water Circuit Report - Oakamoor

For: 01/10/2009 to 24/12/2009

River Discharge Analysis


For River Discarge pH

No of Samples	61
Minimum	5.20
Maximum	7.80
Average	6.54
Std Dev (n-1)	0.44
Limits 5.00 to 9.00	
L	

River Discharge Analysis

For River Discarge SS

61	-
10.40	ļ
49.00	
24.84	İ
8.74	İ
ppm	1
	10.40 49.00 24.84

Date

Environment Agency Samples			
Date Sampled	Analysis	Result	
18/02/2009	pH EA Recorded	7.20	
	pH OK Recorded	6.50	
	SS Result	35.00	
11/03/2009	pH EA Recorded	7.50	
	pH OK Recorded	6.90	
	SS Result	28.60	
05/06/2009	pH EA Recorded	7.10	
	pH OK Recorded	6.90	
	SS Result	14.40	
28/07/2009	pH EA Recorded	7.50	
	pH OK Recorded	6.90	
	SS Result	21.00	
25/11/2009	pH EA Recorded	6.50	
	pH OK Recorded	7.00	
	SS Result	16.40	
09/12/2009	pH EA Recorded	6.50	
	pH OK Recorded	6.80	
	SS Result	22.00	

Monthly Volumes E	xtracted (G x 100	<u>0)</u>
October 2009	Total Volume	7,609
November 2009	Total Volume	10,945
December 2009	Total Volume	6,166

NOTES

It is essential that Nikki Carey is informed of visits by the EA and samples taken in conjunction with them are saved for analysis, and the EA portable pH results noted.

Similarly, it is essential that both Nikki Carey and Production Management are informed immediately of discharge failures and corrective action taken. This applies to both production personnel observing the continuous monitoring equipment, and to lab staff carrying out daily analysis.

APPENDIX E - ABSTRACTION LICENCES

Water Resources Act 19

(as amended by the Environment Act 1995)

Consent to Discharge Certificate of Holder

Part A

To:

Sibelco Minerals and Chemicals Limited (trading as WBB Minerals)

Brookside Hall Sandbach Cheshire

The **Environment Agency** ("The Agency") hereby confirms that the above named person(s) or body corporate is and has been since its date of issue the registered holder of Consent T/30/35773/T.

Nature of Discharge(s): Augmentation Water Consisting of Pumped Quarry Water Only At: Moneystone Quarry, Whiston Eaves Lane, Stoke-on-Trent, Staffordshire

Note: This certificate should be kept with the consent document for future reference. If you transfer responsibility for the discharge to somebody else you must pass the consent to them and tell the Agency within 21 days. Responsibility for the consent cannot be disclaimed by the holder but the registration of holder may be transferred to a successor. To do this please complete the form below, then tear it off and return it to the address shown. If you fail to transfer the consent, even though you are no longer on the site, you may still be liable for prosecution for pollution. If you transfer the consent but do not tell us, you will be committing an offence. In case of any queries please contact your local Environment Agency office.

Part B Please complete in block capitals or type.

To: The Environment Agency, Authorisations Section

Sentinel House, 9 Wellington Crescent, Fradley Park, Lichfield, WS13 8RR

Water Resources Act 1991: Notice of transfer of consent to discharge

Consent

T/30/35773/T

Name

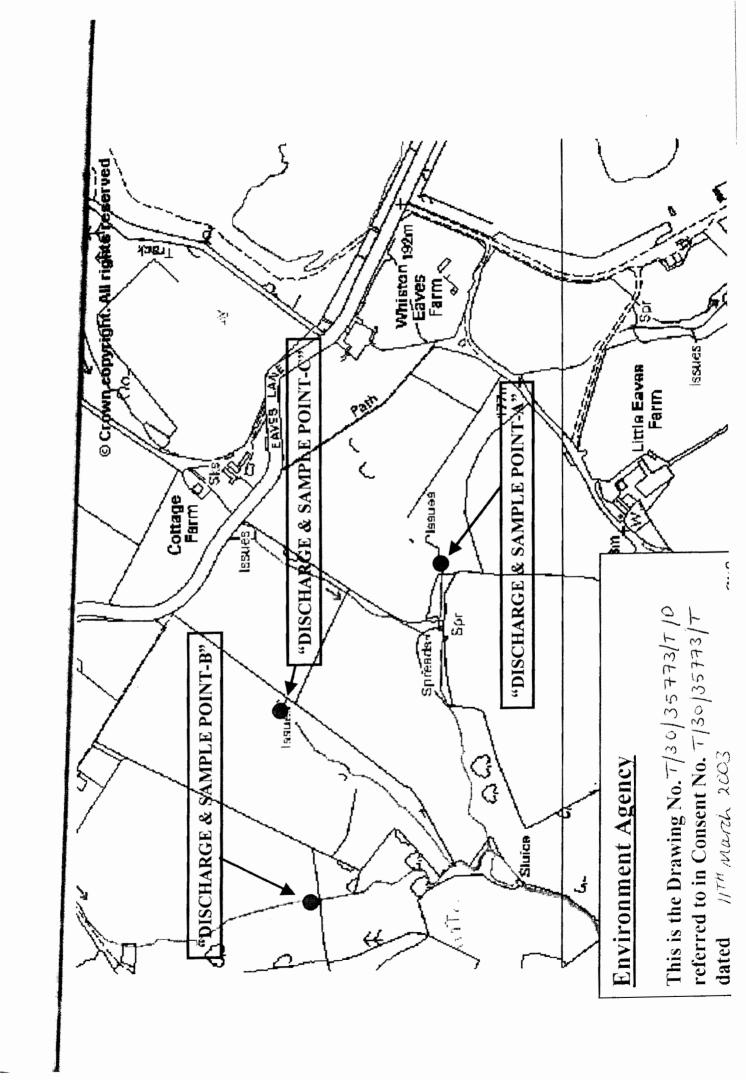
Sibelco Minerals and Chemicals Limited

(trading as WBB Minerals)

Address

Brookside Hall

Sandbach Cheshire


I/We* hereby serve notice on the Agency and I/We* am/are* no longer a/the Holder of the above consent which will be/was* transferred to: *delete as appropriate

Name(s) of new Holder(s): Address:

Post Code:	
Date of Transfer to New Holder(s):	••••
Signed:	Dated:
	Position:

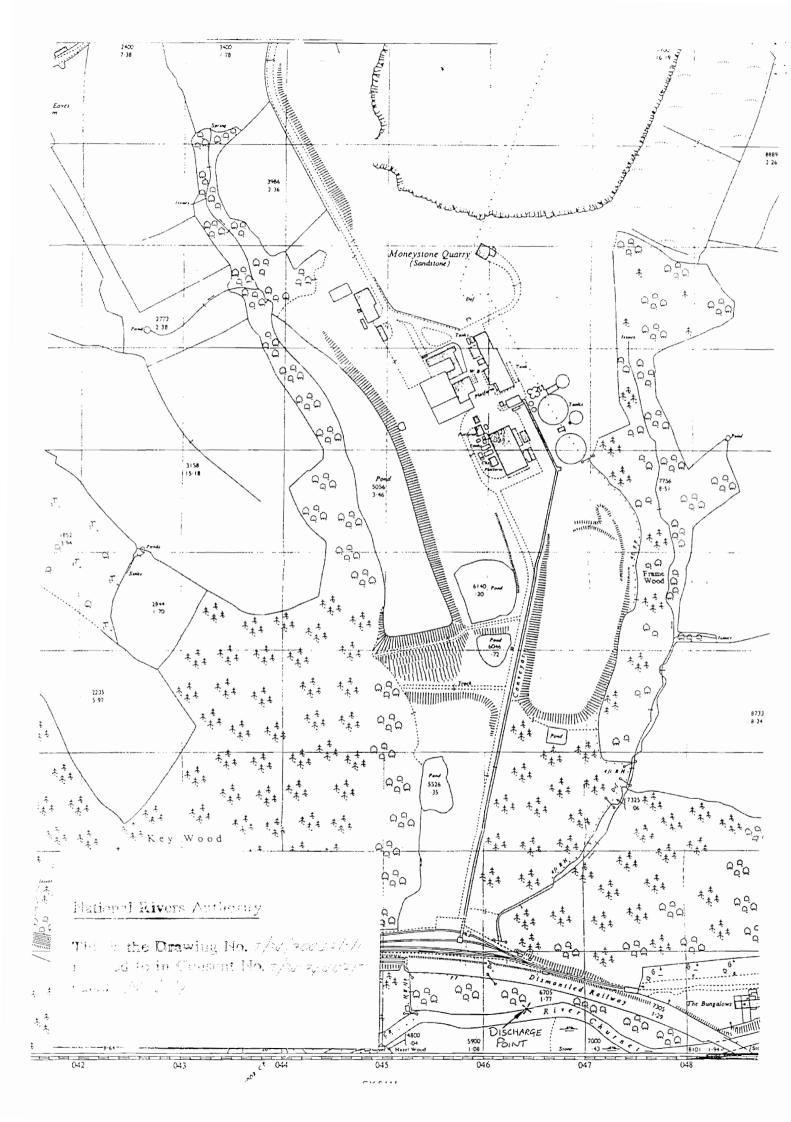
(to be completed when signing on behalf of corporate bodies)

CONSENT NO.

T/30/35773/T

WATER RESOURCES ACT 1991 (AS AMENDED BY THE ENVIRONMENT ACT 1995) SECTION 88 – SCHEDULE 10 CONSENT TO DISCHARGE

TO:


Sibelco Minerals and Chemicals Limited

Brookside Hall Sandbach Cheshire

The ENVIRONMENT AGENCY (the "Agency") in pursuance of its powers under the Water Resources Act 1991 HEREBY CONSENTS to the making of three discharges of TRADE EFFLUENT as follows:

Augmentation Water Consisting of Pumped Quarry Water Only Augmentation Water Consisting of Pumped Quarry Water Only Augmentation Water Consisting of Pumped Quarry Water Only

FROM:	Moneystone Quarry	
AT:	Whiston Eaves Lane, Stoke-on-Trent, Staffordshire	
то:	Unnamed tributaries of the River Churnet	
SUBJEC	TTO the conditions set out in the following schedules:	
Augment	ation Water Consisting of Pumped Quarry Water Only ation Water Consisting of Pumped Quarry Water Only ation Water Consisting of Pumped Quarry Water Only	Schedule No. T/30/35773/T 01 Schedule No. T/30/35773/T 02 Schedule No. T/30/35773/T 03

CONSENT NO.	T/30/35773/T	
SCHEDULE NO.	T/30/35773/T 01	
DATE ISSUED	11 MAR 2003	

CONDITIONS OF CONSENT TO DISCHARGE

AUGMENTATION WATER CONSISTING OF PUMPED QUARRY WATER ONLY ("the Discharge")

FROM: MONEYSTONE QUARRY, WHISTON EAVES LANE, STOKE-ON-TRENT, STAFFORDSHIRE

MINIMISE EFFECT

- 1 (a) The Discharge shall not contain any poisonous, noxious, or polluting matter or solid waste matter.
 - (b) Provided that the Discharge hereby consented is made in accordance with the following conditions of this consent, such discharge shall not be taken to be in breach of paragraph (a) above by reason of containing substances or having properties identified in and controlled by these conditions.

NATURE

The Discharge shall consist solely of augmentation water consisting of pumped quarry water only.

LOCATION

- 3 The Discharge shall be made in the manner and at the place specified as:-
 - (a) discharging to an unnamed tributary of the River Churnet
 - (b) at National Grid Reference SK 0404 4614
 - (c) shown marked "DISCHARGE & SAMPLE POINT-A" on attached Drawing No.T/30/35773/T/D.

SAMPLE POINT

The outlet to the watercourse shall be constructed and maintained so that a representative sample of the Discharge may be obtained at National Grid Reference SK 0387 4614 as shown marked "DISCHARGE & SAMPLE POINT-A" on attached Drawing No. T/30/35773/T/D.

VOLUME, RATE & FLOW

- 5 The volume of the Discharge shall not exceed 950 cubic metres per day.
- The rate of discharge shall not exceed 11 litres per second.

T/30/35773/T 01

FLOW MEASUREMENT

At the request of the Agency, the consent holder shall install, operate and maintain a means of flow measuring to a specification and at a location required by the Agency, to enable the daily volume and/or instantaneous flow of the discharge to be recorded. The consent holder shall calibrate, operate and maintain the flow monitoring and recording system to a standard agreed or specified by the Agency. The flow and maintenance records shall be provided to the Agency as and when requested.

COMPOSITION

- The composition of the Discharge shall be such that:
 - suspended solids, dried at 105 degrees Celsius, shall not exceed 25 milligrams (a) per litre.
 - the pH value shall not be less than 6 nor greater than 9. (b)
 - there shall be no visible oil or grease in the receiving watercourse as a result of (c) the discharge.

NON-INJURIOUS TO FISH

As far as is reasonably practicable, the Discharge shall not contain any matter, other than matter specifically covered by numerical conditions in this consent, to such an extent as to cause the receiving waters, or any waters of which the receiving waters are a tributary, to be poisonous or injurious to fish in those waters, or to the spawning grounds, spawn or food of fish in those waters, or otherwise cause damage to the ecology of those waters or to have any other adverse environmental impact.

RECORDING AND REPORTING

10 The consent holder shall establish and operate a documented maintenance programme and record all non-routine actions undertaken. These records shall be kept in a format agreed by the Agency and shall be made available for inspection by the Agency's officers at all reasonable times. Upon request the consent holder shall also provide the Agency with copies of the said records.

START DATE

11 There shall be no discharge under the terms of this consent until the 01 OCTOBER 2003 or some other date as modified in writing by the Agency prior to that date or the start of commissioning of the works whichever is the sooner. The consent holder shall give the Agency at least 28 days written notice before making the discharge.

Dated this

aleventh

2003.

day of March
IM Bowen

CONSENT NO.	T/30/35773/T	
SCHEDULE NO.	T/30/35773/T 02	
DATE ISSUED	11 MAR 2003	

CONDITIONS OF CONSENT TO DISCHARGE

AUGMENTATION WATER CONSISTING OF PUMPED QUARRY WATER ONLY ("the Discharge")

FROM: MONEYSTONE QUARRY, WHISTON EAVES LANE, STOKE-ON-TRENT, STAFFORDSHIRE

MINIMISE EFFECT

- 1 (a) The Discharge shall not contain any poisonous, noxious, or polluting matter or solid waste matter.
 - (b) Provided that the Discharge hereby consented is made in accordance with the following conditions of this consent, such discharge shall not be taken to be in breach of paragraph (a) above by reason of containing substances or having properties identified in and controlled by these conditions.

NATURE

The Discharge shall consist solely of augmentation water consisting of pumped quarry water only.

LOCATION

- 3 The Discharge shall be made in the manner and at the place specified as:-
 - (a) discharging to an unnamed tributary of the River Churnet
 - (b) at National Grid Reference SK 0364 4630
 - (c) shown marked "DISCHARGE & SAMPLE POINT-B" on attached Drawing No.T/30/35773/T/D.

SAMPLE POINT

The outlet to the watercourse shall be constructed and maintained so that a representative sample of the Discharge may be obtained at National Grid Reference SK 0364 4630 as shown marked "DISCHARGE & SAMPLE POINT-B" on attached Drawing No. T/30/35773/T/D.

VOLUME, RATE & FLOW

- 5 The volume of the Discharge shall not exceed 2110 cubic metres per day.
- The rate of discharge shall not exceed 24.5 litres per second.

FLOW MEASUREMENT

At the request of the Agency, the consent holder shall install, operate and maintain a means of flow measuring to a specification and at a location required by the Agency, to enable the daily volume and/or instantaneous flow of the discharge to be recorded. The consent holder shall calibrate, operate and maintain the flow monitoring and recording system to a standard agreed or specified by the Agency. The flow and maintenance records shall be provided to the Agency as and when requested.

COMPOSITION

- 8 The composition of the Discharge shall be such that:
 - (a) suspended solids, dried at 105 degrees Celsius, shall not exceed 25 milligrams per litre.
 - (b) the pH value shall not be less than 6 nor greater than 9.
 - (c) there shall be no visible oil or grease in the receiving watercourse as a result of the discharge.

NON-INJURIOUS TO FISH

As far as is reasonably practicable, the Discharge shall not contain any matter, other than matter specifically covered by numerical conditions in this consent, to such an extent as to cause the receiving waters, or any waters of which the receiving waters are a tributary, to be poisonous or injurious to fish in those waters, or to the spawning grounds, spawn or food of fish in those waters, or otherwise cause damage to the ecology of those waters or to have any other adverse environmental impact.

RECORDING AND REPORTING

The consent holder shall establish and operate a documented maintenance programme and record all non-routine actions undertaken. These records shall be kept in a format agreed by the Agency and shall be made available for inspection by the Agency's officers at all reasonable times. Upon request the consent holder shall also provide the Agency with copies of the said records.

START DATE

There shall be no discharge under the terms of this consent until the **01 OCTOBER 2003 or some other date as modified in writing by the Agency prior to that date** or the start of commissioning of the works whichever is the sooner. The consent holder shall give the Agency at least 28 days written notice before making the discharge.

Dated this

eleventh

day of

March

2003.

J.M.Bowen

Team Leader Environment Management

CONSENT NO.	T/30/35773/T	
SCHEDULE NO.	Т/30/35773/Т 03	
DATE ISSUED	11 MAR 2665	

CONDITIONS OF CONSENT TO DISCHARGE

AUGMENTATION WATER CONSISTING OF PUMPED QUARRY WATER ONLY ("the Discharge")

FROM: MONEYSTONE QUARRY, WHISTON EAVES LANE, STOKE-ON-TRENT, STAFFORDSHIRE

MINIMISE EFFECT

- 1 (a) The Discharge shall not contain any poisonous, noxious, or polluting matter or solid waste matter.
 - (b) Provided that the Discharge hereby consented is made in accordance with the following conditions of this consent, such discharge shall not be taken to be in breach of paragraph (a) above by reason of containing substances or having properties identified in and controlled by these conditions.

NATURE

The Discharge shall consist solely of augmentation water consisting of pumped quarry water only.

LOCATION

- The Discharge shall be made in the manner and at the place specified as:-
 - (a) discharging to an unnamed tributary of the River Churnet
 - (b) at National Grid Reference SK 0386 4634
 - (c) shown marked "DISCHARGE & SAMPLE POINT-C" on attached Drawing No.T/30/35773/T/D.

SAMPLE POINT

The outlet to the watercourse shall be constructed and maintained so that a representative sample of the Discharge may be obtained at National Grid Reference SK 0386 4634 as shown marked "DISCHARGE & SAMPLE POINT-C" on attached Drawing No. T/30/35773/T/D.

VOLUME, RATE & FLOW

- 5 The volume of the Discharge shall not exceed 350 cubic metres per day.
- The rate of discharge shall not exceed 4 litres per second.

FLOW MEASUREMENT

At the request of the Agency, the consent holder shall install, operate and maintain a means of flow measuring to a specification and at a location required by the Agency, to enable the daily volume and/or instantaneous flow of the discharge to be recorded. The consent holder shall calibrate, operate and maintain the flow monitoring and recording system to a standard agreed or specified by the Agency. The flow and maintenance records shall be provided to the Agency as and when requested.

COMPOSITION

- 8 The composition of the Discharge shall be such that:
 - (a) suspended solids, dried at 105 degrees Celsius, shall not exceed 25 milligrams per litre.
 - (b) the pH value shall not be less than 6 nor greater than 9.
 - (c) there shall be no visible oil or grease in the receiving watercourse as a result of the discharge.

NON-INJURIOUS TO FISH

As far as is reasonably practicable, the Discharge shall not contain any matter, other than matter specifically covered by numerical conditions in this consent, to such an extent as to cause the receiving waters, or any waters of which the receiving waters are a tributary, to be poisonous or injurious to fish in those waters, or to the spawning grounds, spawn or food of fish in those waters, or otherwise cause damage to the ecology of those waters or to have any other adverse environmental impact.

RECORDING AND REPORTING

The consent holder shall establish and operate a documented maintenance programme and record all non-routine actions undertaken. These records shall be kept in a format agreed by the Agency and shall be made available for inspection by the Agency's officers at all reasonable times. Upon request the consent holder shall also provide the Agency with copies of the said records.

START DATE

There shall be no discharge under the terms of this consent until the **01 OCTOBER 2003 or some other date as modified in writing by the Agency prior to that date** or the start of commissioning of the works whichever is the sooner. The consent holder shall give the Agency at least 28 days written notice before making the discharge.

Dated this

deventh

day of

March

2003.

YM. Bowen

Team Leader Environment Management