SPILMAN ASSOCIATES

Geotechnicai and Environmental Engineers

Spilman Associates Limited 38 South Avenue Stourbridge West Midlands DY8 3XY

Tel: 01384 820578 Email: harry@spilmanassociates.co.uk

Humphries Builders Limited

ENDON RIDING SCHOOL STANLEY MOSS LANE, ENDON

Ground Investigation Report

May 2017

Report No J17032/01

Issued By: Hang Suile Date Issued: 23 May 2017

CONTENTS

1.0 INTRODUCTION

2.0 SITE LOCATION AND DESCRIPTION

- 2.1 Site Location
- 2.2 Site Description
- 3.0 SITE HISTORY
- 4.0 GEOLOGY
- 5.0 MINING

6.0 HYDROLOGY & HYDROGEOLOGY

- 6.1 Hydrology
- 6.2 Hydrogeology

7.0 ENVIRONMENTAL DATABASE SEARCH

8.0 PRELIMINARY RISK ASSESSMENT

9.0 GROUND INVESTIGATION

- 9.1 Site Works
- 9.2 Insitu Testing
 - 9.2.1 Standard Penetration Tests
 - 9.2.2 PID Screening
- 9.3 Instrumentation
- 9.4 Laboratory Testing
 - 9.4.1 Soil Contamination Testing
 - 9.4.2 Water Contamination Testing
 - 9.4.3 Geotechnical Testing

10.0 GROUND CONDITIONS

- 10.1 Made Ground
- 10.2 Original Topsoil
- 10.3 Glacial Till
- 10.4 Glaciofluvial Deposits
- 10.5 Bowland Shale
- 10.6 Groundwater

11.0 CONTAMINATION ASSESSMENT

- 11.1 Introduction
- 11.2 Visual and Olfactory Evidence
- 11.3 Human Health
 - 11.3.1 Metals
 - 11.3.2 Cyanide and Phenols
 - 11.3.3 Polycyclic Aromatic Hydrocarbons (PAH)
 - 11.3.4 Total Petroleum Hydrocarbons (TPH)
 - 11.3.5 Asbestos
- 11.4 Water Samples
- 11.5 Contamination Recommendations
 - 11.5.1 General
 - 11.5.2 Human Health
 - 11.5.3 Controlled Waters
 - 11.5.4 Regulatory Approvals
 - 11.5.5 Unexpected Contamination
- 12.0 GROUND GASES

13.0 ENGINEERING CONSIDERATIONS

- 13.1 Foundations
- 13.2 Building Near Trees
- 13.3 Floor Slabs
- 13.4 Excavations
- 13.5 Groundwater
- 13.6 Buried Concrete
- 13.7 Water Pipes
- 13.8 Slope Stability

TABLES

Table No	Table Title
1	Summary of Soil Contamination Results
	FIGURES
Figure No	Figure Title
1 2 3 4 5 6	Site Location Plan Site Layout Plan Borehole Location Plan SPT N Value vs Depth Plasticity Chart Conceptual Model
	APPENDICES
<u>Appendix No</u>	Appendix Title
A	Development Layout

В	Topographic Survey
С	Site Features Plan
D	Borehole Records
E	Summary of SPT "N" Results
F	PID Screening Results
G	Gas Monitoring Results
Н	Soil Contamination Test Results
I	Water Contamination Test Results
J	Geotechnical Test Results

1.0 INTRODUCTION

Spilman Associates Limited have been appointed by Humphries Builders Limited to carry out a ground investigation for a proposed residential development at Endon Riding School, Stanley Moss Lane, Endon, Stokeon-Trent, Staffordshire, ST9 9LH.

This report presents the findings of an intrusive investigation and associated monitoring and laboratory testing.

An indicative development layout is shown on the Architect's drawing reproduced at Appendix A.

This report should be read in conjunction with the Lees Roxburgh Limited "Phase 1 Geoenvironmental Assessment (Desk Study)" dated August 2014 (Report No 5824/R1).

The above desk study contains a very detailed description of the site and its environs, however, for ease of reference a summary of key background information is reproduced within this report.

2.0 SITE LOCATION AND DESCRIPTION

2.1 Site Location

The site is located at National Grid Reference 392660E 352240N approximately 1km south of Endon (Figure 1).

2.2 <u>Site Description</u>

The site is irregularly shaped with approximate maximum dimensions of 100m by 80m (Figure 2). A topographic survey covering the site and the surrounding area has been provided and is reproduced at Appendix B.

The site is occupied by Endon Riding School at the centre of which is a large portal frame building used as an indoor arena. To the north of this are numerous timber stables and storage buildings. To the east of the main building is an open yard area in the north and the site's main residence to the south. Further residential, stable and storage buildings are located in the eastern part of the site.

There are two access points into the site from Stanley Moss Lane which forms the site's southern boundary. To the north of the site is a steep bank leading down to a west flowing stream.

There are a number of trees located within the site which are predominantly around the site perimeter.

Three above ground heating oil or diesel tanks are present within the site at locations shown on the plan at Appendix C.

3.0 SITE HISTORY

The site history has been assessed by reference to readily available historic Ordnance Survey (OS) Plans.

The 1st Edition 1880 OS Plan shows the majority of the site to comprise part of an open agricultural field. The existing main residence building and associated outbuildings are shown in the southeast part of the site and are marked as "Coltslow".

The site remains unchanged on the 1900, 1925, 1937, 1955, 1962 and 1968 OS Plans.

By 1982 the main portal frame building has been constructed together with several other smaller buildings. The site layout has remained largely unchanged up to the present day.

4.0 GEOLOGY

The site geology has been assessed by reference to the 1:50,000 scale Geological Map Sheet 123 (Stoke-on-Trent) published by the British Geological Survey.

The site is shown to directly underlain by glacial till deposits. Immediately to the west of the site glaciofluvial deposits are marked.

The natural superficial deposits are underlain by solid strata of the Bowland Shale Group (previously known as the Edale Shale Formation) of the Carboniferous Period. The Bowland Shale Formation comprises dark grey fissile and blocky mudstone, weakly calcareous with sequences of interbedded limestone and sandstone.

The dip of the solid strata is not recorded at the site, however, immediately to the south of the site a dip of 16 degrees is shown towards the east.

There are no recorded geological fault on the site, although a NNW-SSE trending fault is marked to the east of the site.

5.0 MINING

The site is not in an area impacted by recorded mining nor does it lie in an area where unrecorded mining could have occurred.

6.0 HYDROLOGY & HYDROGEOLOGY

6.1 <u>Hydrology</u>

The closest watercourse to the site is the west flowing stream located immediately to the north.

The main development area of the site does not lie within an area prone to fluvial flooding.

6.2 <u>Hydrogeology</u>

The solid strata underlying the site are classified as a Secondary A Aquifer by the Environment Agency in accordance with their Bedrock Aquifer Designation. The glacial till is classified as Unproductive Strata.

The site does not lie within a Groundwater Source Protection Zone as defined by the Environment Agency.

7.0 ENVIRONMENTAL DATABASE SEARCH

An Environmental Database Search was carried out for the site as part of the desk study and identified the following key issues:

- there is one recorded landfill site within 250m of the site. This was located 53m to the west of the site at Houghwood Bottom Farm. The records indicate that the deposited wastes included household waste and that deposition occurred between 1965 and 1971. The landfill is understood to have been operated by Leek District Council
- there are no recorded pollutions incidents within 250m of the site
- the site does not lie in an area where radon gas protection measures are required in new developments.

8.0 PRELIMINARY RISK ASSESSMENT

A preliminary contamination risk assessment carried out within the desk study suggested that:

"...any risk of contamination can be considered to be low and the property is unlikely to be designated as "contaminated land" under Part IIA of the Environmental Protection Act 1990"

Nonetheless an intrusive investigation was recommended to include both soil contamination testing and ground gas monitoring.

9.0 GROUND INVESTIGATION

9.1 <u>Site Works</u>

The site works were carried out on 24th April 2017 and comprised the drilling of six mini-rig boreholes at locations shown on Figure 3.

The mini-rig boreholes were advanced by percussive techniques in 1m intervals. All boreholes were logged by a Geotechnical Engineer and detailed records are reproduced at Appendix D.

9.2 Insitu Testing

9.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1m intervals in all mini-rig boreholes. The test results are shown in full at Appendix E and summarised on the borehole records at Appendix D. The results are also shown graphically on Figure 4.

9.2.2 PID Screening

Selected soil samples were screened for volatile organic compounds using a portable Photoionisation Devise (PID). The test results are reproduced at Appendix F.

9.3 Instrumentation

Combined gas and groundwater monitoring standpipes were installed in BH2, BH3, BH4 and BH6. The installation details are shown on the borehole records at Appendix D.

Gas and groundwater level monitoring was carried out on six occasions. Monitoring was carried out with a portable infrared gas analyser (Gas Data GFM 436). Groundwater depths were determined with an electronic dipmeter.

The monitoring results are presented at Appendix G.

9.4 Laboratory Testing

9.4.1 Contamination Testing

Six near surface soil samples were tested for the following determinands:

- Former ICRCL Suite
- Speciated Polycyclic Aromatic Hydrocarbons (PAH)
- Total Petroleum Hydrocarbons (TPH) with an Aromatic/Aliphatic Split
- Asbestos Screen

An additional four soil samples were tested for TPH only.

The test results are reproduced at Appendix H.

Asbestos fibres were identified in one sample (BH2 at 0.10m) and further asbestos quantification was carried out on this sample. The results are presented at Appendix H.

9.4.2 Water Contamination Testing

Groundwater samples were obtained from BH3 and BH4 and a surface water sample was obtained from the stream to the north of the site (see Figure 3 for sampling location).

All three water samples were tested for TPH and BTEX compounds and the results are reproduced at Appendix I.

9.4.3 Geotechnical Testing

Selected soil samples were tested for the following parameters:

- Moisture Content
- Liquid Limit
- Plastic Limit
- Soluble Sulphate
- ♦ pH

The test results are reproduced at Appendix J. Index properties are shown on the plasticity chart at Figure 5.

10.0 GROUND CONDITIONS

10.1 Made Ground

A thin covering of made ground as identified in BH1, BH2, BH3 and BH4 with thicknesses in the range 0.15m to 0.35m.

In BH5 and BH6 made ground thicknesses were 1.25m and 1.80m. In BH5 the made ground comprised clayey sandy gravel with fragments of brick and concrete. In BH6 and upper granular layer of made ground extended to 0.55m with a firm clay to 0.95m and a very soft clay from 0.95m to 1.80m.

10.2 Original Topsoil

A thin layer of original topsoil was identified in BH1 (0.20m to 0.50m) and BH3 (0.35m to 0.80).

10.3 Glacial Till

The made ground and topsoil (where present) was underlain by glacial till in all boreholes except BH4. The glacial till generally comprised firm slightly sandy slightly gravelly clay.

10.4 Glaciofluvial Deposits

In BH4 the made ground was underlain by glaciofluvial deposits which comprised silty sand with varying amounts of gravel.

10.5 Bowland Shale

Solid strata of the Bowland Shale was identified in BH3 (5.20m), BH4 (4.30m) and BH5 (4.30m) and comprised very weak grey mudstone.

10.4 Groundwater

No groundwater was encountered during drilling in BH1, BH2 and BH6.

In BH3 groundwater was identified at 2.00m and in BH4 and BH5 at a depth of 4.00m.

Subsequent groundwater monitoring in four of the boreholes identified the following range of groundwater depths:

Borehole	Range of Groundwater Depths (m)
BH2	0.77 – 1.96
BH3	1.61 – 1.66
BH4	2.28 – 2.34
BH6	3.51 – >5.45

11.0 CONTAMINATION ASSESSMENT

11.1 Introduction

The legislative framework for managing the liabilities imposed by contaminated land in the UK is detailed within Part IIA of the Environmental Protection Act 1990. Under the Act contaminated land is defined as any land in, on or under which there are substances that cause significant harm or have the potential to cause significant harm to health or the environment or where pollution of controlled waters is being or is likely to be caused.

The environmental impact of the site has been considered using a riskbased approach incorporating the accepted Source-Pathway-Receptor model ("pollutant linkage"). The source is identified as a function of the nature of any contaminants which may be present. The receptor is the point in the environment at which damage may occur if the contaminant is present at a level sufficient to cause harm. The pathway is the route in the environment by which the contaminant may be transferred from the source to the receptor. For there to be a significant risk there must be a link between an identified pollutant source and a receptor.

A conceptual site model has been developed for the site (see Figure 6) and a simple qualitative risk assessment has been carried out based on generic environmental standards as detailed below. Soil contamination test results are reproduced at Appendix H and are summarised on Table 1.

11.2 Visual and Olfactory Evidence

No visual or olfactory evidence of soil contamination was identified during the current investigation with the exception of a hydrocarbon odour in BH3 from 0.80m to 2.10m.

11.3 Human Health

11.3.1 Metals

The soil test results have been assessed against the published CLEA Soil Guideline Values (SGVs). Where no SGVs are available the results have been assessed against the LQM/CIEH S4ULs. Lead has been assessed against the potential Category 4 Screening Level (C4SL) of 200mg/kg in the absence of any updated CLEA SGVs. All results are based on a residential end-use. The test results are summarised below:-

		Screening					
Determinand	BH1 0.25m	BH2 0.10m	BH3 0.40m	BH4 0.20m	BH5 0.35m	BH6 0.40m	Value (mg/kg)
Arsenic	5	19	11	13	10	13	32
Boron	<1	<1	<1	<1	<1	<1	291
Cadmium	<1	1	<1	<1	<1	2	10
Chromium	10	23	15	17	15	18	910
Chromium VI	<1	<1	<1	<1	<1	<1	6
Copper	11	140	22	16	32	37	2330
Lead	44	97	63	53	110	480	200
Mercury	<1	<1	<1	<1	<1	1	170
Nickel	8	25	12	19	15	20	130
Selenium	<3	<3	<3	<3	<3	<3	350
Zinc	32	170	90	56	100	180	3750

Concentrations of all determinands except lead were below appropriate screening values.

Lead was elevated in BH6 at 0.40m with a concentration of 480mg/kg compared to the screening value of 200mg/kg.

11.3.2 Cyanide and Phenols

Concentrations of free cyanide and phenols were below the laboratory detection limit of 1.0mg/kg in all samples. Free cyanide concentrations were significantly below the screening value of 20mg/kg and phenol concentrations were below the screening value of 780mg/kg.

11.3.3 Polycyclic Aromatic Hydrocarbons (PAH)

Total PAH concentrations ranged from 0.1mg/kg to 26mg/kg.

All individual PAH compound concentrations were below the appropriate screening value with the exception of b/k fluoranthene in BH2 at 0.10m

11.3.4 Total Petroleum Hydrocarbons (TPH)

TPH concentrations for both aromatic and aliphatic compounds over all carbon ranges were below the appropriate screening value in all samples except BH3 at 1.50m.

BTEX compounds were at concentrations below the appropriate screening value in all samples.

11.3.5 Asbestos

Six samples were screened for asbestos with Chrysotile fibres detected in BH2 0.10m only. As asbestos quantification was carried out in this sample (see results at Appendix H) and recorded 0.002% asbestos.

11.4 Water Samples

Elevated TPH concentrations were identified in soil samples from BH3 (located adjacent to an existing above ground diesel oil storage tank). Accordingly a groundwater sample was obtained from this borehole and BH4 which lies between BH3 and the stream to the north. In addition a surface water sample was obtained from the stream.

All three samples were analysed for TPH and BTEX compounds and the results are reproduced at Appendix I.

BTEX compounds were absent in all three samples. TPH compounds were absent in BH4 with traces of TPH identified in BH3 (0.03mg/I Aliphatics C12-C16).

The surface water sample identified higher TPH concentrations than the groundwater sample from BH3 and concentrations above the laboratory detection limit were as follows:

Aliphatic (C12 – C16)	0.10mg/l
Aliphatic (C16 – C21)	0.06mg/l

11.5 Contamination Recommendations

11.5.1 General

A qualitative risk assessment has been carried out based on the accepted source-pathway-receptor pollutant linkages methodology. The assessment considers a site specific conceptual model designed from information obtained from the current investigation.

The principal receptors at the site are considered to be humans and controlled waters.

11.5.2 Human Health

Concentrations of all determinands were below recognised human health soil screening values with the exception of lead and TPH. These elevated concentrations pose a potential hazard with respect to human health without appropriate remedial measures.

Appropriate remedial measures should be designed to server the identified pollutant linkage. This could be achieved by the provision of a clean cover layer or the removal of impacted soils. The removal of impacted soils may not be cost-effective given the depth of made ground present in parts of the site.

The cover layer should comprise a minimum 600mm of clean topsoil and/or subsoil which will effectively isolate any residual contaminants from the site end-users thus breaking the identified pollutant linkage. No special measures are considered necessary beneath buildings, parking areas and other areas of hardstanding.

The traces of asbestos identified would also be adequately mitigated by the proposed clean cover layer.

Care should be taken to ensure that all imported materials are uncontaminated. Appropriate testing and validation of the remedial works should be carried out to the satisfaction of the Local Authority and Warranty Provider. The remedial works should be completed and validated before the development is first occupied.

11.5.3 Controlled Waters

Elevated soil concentrations of TPH were identified within a granular layer in BH3 at depths between 0.80m and 2.10m.

The source of these elevated TPH concentrations are considered to be from historic leakages or spill from the above ground diesel storage tank. The current tank is a modern self-bunded plastic tank, however, discussions with the site owner indicate that an unbunded steel diesel tank was previously used. It is anticipated that small scale spills and leakages either during tank filling or filling of individual vehicles (tractors) would have caused the current elevated TPH concentrations in soils. A groundwater sample taken from BH3 identified only trace concentrations of aliphatic TPH in the range C12 – C16 (0.03mg/l). A groundwater sample from BH4 located midway between BH3 and the stream recorded an absence of TPH. This would tend to suggest that significant TPH migration towards the stream has not occurred.

More elevated TPH concentrations were recorded within the stream than identified in BH3. The inference being that the TPH impacts on the stream are unlikely to be from the site itself.

The investigation and testing carried out suggest that the identified localised TPH soil contamination is not currently impacting the nearby stream. However, during site development it is recommended that some further investigation be carried out in the vicinity of the diesel tank to determine any requirements for localised remedial works. Such works could include limited excavation and off-site disposal of hydrocarbon soils or small scale bioremediation to reduce TPH concentrations in soils.

11.5.4 Regulatory Approvals

The contamination conclusions and recommendations detailed in this report should be submitted to and approved by the Local Authority prior to commencement of any development works.

11.5.5 Unexpected Contamination

In the event of actual or suspected contamination not identified by this investigation being encountered during site development works then further advice should be sought and the Local Authority informed.

15

12.0 GROUND GASES

The desk study research identified a former landfill site 53m to the west of the site and accordingly a programme of ground gas monitoring was carried out.

Ground gas monitoring was carried out in four boreholes on six occasions. Gas monitoring results are detailed in full at Appendix G and are summarised below:

Borehole	Maximum CH ₄ %	Maximum CO ₂ %	Minimum O ₂ %
BH2	0.0	0.4	19.9
BH3	4.4	4.3	2.3
BH4	0.0	4.2	16.4
BH6	2.5	9.2	1.5

Borehole gas flow rates were less than 0.5 litres per hour in all boreholes on all monitoring visits. Atmospheric pressures during the monitoring ranged from 998 to 1006 millibars with two readings less than 1000 millibars.

Worst case Gas Screening Values (GSVs) for the site have been calculated as follows in accordance with CIRIA C665 (2007) Assessing Risks Posed by Hazardous Ground Gases to Buildings:

GSV _{methane}	0.022l/hr
GSV _{carbon} dioxide	0.046l/hr

These results do not exceed that threshold for a classification of Characteristic Situation 1. However, since the maximum methane concentration exceeds 1% and the maximum carbon dioxide concentration exceeds 5% then the classification should be advanced to Characteristic Situation 2 (CS2).

Borehole PID readings were very low in all boreholes except BH3 where readings ranged from 3.1ppm to 13.6ppm.

The elevated methane and carbon dioxide levels are such that gas protection measures should be provided to all buildings within the site. The nature of the gas protection measures can be determined in accordance with BS8485(2015) Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Buildings.

A site classification of Characteristic Situation 2 (CS2) would require 3.5 points of protection in accordance with the British Standard which could be achieved as follows:

Item	Description	Points Score
(a)	Passive sub slab gas venting to achieve good	1.5
	performance (venting of open void via	
	periscopic airbrick vents or similar)	
(b)	Proprietary gas resistant membrane to entire	2.0
	building footprint, sealed around services	
	penetrations and continuous across the	
	cavity. Installation to be fully verified and	
	tested in accordance with CIRIA C735 (2014)	
	Total Points Score	3.5

In the vicinity of the above ground diesel tank where elevated TPH concentrations have been identified the proprietary gas resistant membrane should be upgraded to provide protection against the ingress of hydrocarbon vapours.

A detailed validation and verification report will be required in order to satisfy the requirement of the Local Authority.

13.0 ENGINEERING CONSIDERATIONS

13.1 Foundations

Conventional shallow strip foundations are recommended within the glacial till or glaciofluvial deposits. An allowable bearing pressure of 100kN/m² at a nominal depth of around 1.00m is considered appropriate for foundation design purposes. At this loading intensity settlements would be limited to acceptable levels.

Deeper foundations will be required in the vicinity of BH5 and BH6 where more significant thicknesses of made ground were identified (maximum thickness 1.80m in BH6). In these areas deep trench fill foundations should extend down through the full depths of the made ground into competent underlying natural strata.

Although not encountered by the current investigation it is anticipated that areas of deeper made ground may be present within the site associated with previous foundations or other infrastructure. Accordingly localised deepening of foundation excavations could be required to ensure that all foundations extend through all made ground and any disturbed ground.

In addition consideration should be given to the potential for shrinkage or heave associated with nearby trees (see Section 13.2 below).

All foundation excavations should be inspected and approved by the Building Inspector.

In the event of ground conditions differing from those identified by this investigation then further geotechnical advice should be sought.

13.2 Building Near Trees

There are trees around the site which could have the potential to cause heave or shrinkage of the clay soils.

Three clay samples indicated plasticity indices of 17 to 21 which equate to modified plasticity indices of 12 to 19 when taking into account the proportion of material passing the 0.425mm sieve.

In accordance with the NHBC Standards (2016) Chapter 4.2 Building Near Trees the clay soils would be classified as being of Low Volume Change (Shrinkage) Potential.

Foundation depths can be determined in accordance with NHBC Design Charts (or other similar guidance) taking into account the proximity, type and size of nearby trees.

Where necessary further advice on foundation design should be obtained from a Structural Engineer.

13.3 Floor Slabs

Due to the potential for shrinkage or heave and the localised presence of deeper made ground fully suspended beam and block type ground floor slabs are recommended.

13.4 Excavations

Excavations are anticipated to be of varying stability in the made ground and some excavation overbreak and instability should be anticipated. Excavations in the glacial till are anticipated to be stable in the short term, although more unstable conditions may exist within the glaciofluvial deposits identified in BH4.

19

Where man entry is required the excavation sides should be appropriately battered or shored in accordance with Health & Safety Executive Guidance.

13.5 <u>Groundwater</u>

Groundwater depths were variable across the site and consequently some groundwater ingress should be anticipated in shallow excavations.

It should be noted that groundwater levels can be subject to seasonal fluctuations and longer term groundwater monitoring has not been carried out.

13.6 Buried Concrete

Sulphate and pH test results indicate an appropriate design class for buried concrete of DS-1 in accordance with BRE Special Digest 1 (2005). The Aggressive Chemical Environment for Concrete (ACEC) class for the site would be AC-1 assuming mobile groundwater conditions.

13.7 Water Pipes

The elevated TPH concentrations may have the potential to impact conventional polyethylene water supply pipes. Accordingly, the water supply company should be contacted to confirm their precise requirements and the need or otherwise for specialist water supply pipework.

13.8 <u>Slope Stability</u>

There is a steep slope to the north of the site down to the stream. If development is proposed close to the crest of the slope then an assessment of stability may be required. Such an assessment is beyond the scope of this current report. TABLES

TABLE 1: SUMMARY OF SOIL CONTAMINATION RESULTS

Во	orehole	BH1	BH2	BH3	BH4	BH5	BH6	BH3	BH3	BH3	BH3	CLEA SGV or
De	pth (m)	0.25	0.10	0.40	0.20	0.35	0.40	1.50	2.00	2.50	4.50	LQM/CIEH S4UL
Arsenic	mg/kg	5	19	11	13	10	13	-	-	-	-	32
Boron	mg/kg	<1	<1	<1	<1	<1	<1	-	-	-	-	291
Cadmium	mg/kg	<1	1	<1	<1	<1	2	-	-	-	-	10
Chromium	mg/kg	10	23	15	17	15	18	-	-	-	-	910 ¹
Chromium VI	mg/kg	<1	<1	<1	<1	<1	<1	-	-	-	-	6
Copper	mg/kg	11	140	22	16	32	37	-	-	-	-	2330
Lead	mg/kg	44	97	63	53	110	480	-	-	-	-	200 ²
Mercury	mg/kg	<1	<1	<1	<1	<1	1	-	-	-	-	170 ³
Nickel	mg/kg	8	25	12	19	15	20	-	-	-	-	130
Selenium	mg/kg	<3	<3	<3	<3	<3	<3	-	-	-	-	350
Zinc	mg/kg	32	170	90	56	100	180	-	-	-	-	3750
Cyanide (free)	mg/kg	<1	<1	<1	<1	<1	<1	-	-	-	-	20 4
Phenols	mg/kg	<1	<1	<1	<1	<1	<1	-	-	-	-	780
Naphthalene	mg/kg	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	-	-	-	-	2.3
Acenaphthylene	mg/kg	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	-	-	-	-	170
Acenaphthene	mg/kg	<0.1	<1.0	<0.1	<0.1	0.1	<0.1	-	-	-	-	210
Fluorene	mg/kg	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	-	-	-	-	170
Phenanthrene	mg/kg	<0.1	3.6	<0.1	<0.1	0.8	0.4	-	-	-	-	95
Anthracene	mg/kg	<0.1	<1.0	<0.1	<0.1	0.2	0.1	-	-	-	-	2400
Fluoranthene	mg/kg	0.3	5.8	0.2	<0.1	1.2	0.6	-	-	-	-	280
Pyrene	mg/kg	0.3	5.1	0.2	<0.1	1	0.6	-	-	-	-	620
Benzo(a)Anthracene	mg/kg	0.2	2.1	<0.1	<0.1	0.5	0.4	-	-	-	-	7.2
Chrysene	mg/kg	0.2	4.1	<0.1	<0.1	0.5	0.4	-	-	-	-	15
Benzo(b/k)Fluoranthene	mg/kg	0.4	3.1	0.2	<0.1	0.9	0.8	-	-	-	-	2.6/77 5
Benzo(a)Pyrene	mg/kg	0.2	1.4	<0.1	<0.1	0.5	0.4	-	-	-	-	2.2
Indeno(123-cd)Pyrene	mg/kg	<0.1	<1.0	<0.1	<0.1	0.3	0.2	-	-	-	-	27
Dibenzo(ah)Anthracene	mg/kg	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	-	-	-	-	0.24
Benzo(ghi)Perylene	mg/kg	<0.1	<1.0	<0.1	<0.1	0.3	0.3	-	-	-	-	320
PAH (Total)	mg/kg	1.5	26	0.5	<0.1	6.4	4.3	-	-	-	-	N/A
Benzene	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	330
EthylBenzene	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	33	27	350,000
Meta/Para-Xylene	ug/kg	<10	16	<10	<10	<10	<10	<10	<10	16	14	240,000 ⁶
Ortho-Xylene	ug/kg	<10	23	<10	<10	<10	<10	<10	<10	<10	<10	250,000
Toluene	ug/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	610,000
TPH (C5 - C6 Aliphatic)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	42
TPH (C6 - C8 Aliphatic)	mg/kg	<0.10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	100
TPH (C8 - C10 Aliphatic)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	16	3.7	<0.1	<0.1	27
TPH (C10 - C12 Aliphatic)	mg/kg	<1	<10	<1	<1	<10	<10	210	21	1	2	130
TPH (C12 - C16 Aliphatic)	mg/kg	<2	<10	<2	<2	<10	<10	740	90	7	7	1100
TPH (C16 - C21 Aliphatic)	mg/kg	<1	<10	<1	<1	<10	<10	420	66	3	3	65,000 ⁷
TPH (C21 - C35 Aliphatic)	mg/kg	<4	36	<4	<4	<10	<10	220	29	<4	<4	65,000 ⁷
TPH (C35 - C44 Aliphatic)	mg/kg	<1	<10	<1	<1	<10	<10	<10	<1	<1	<1	65,000
TPH (C6 - C7 Aromatic)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	70
TPH (C7 - C8 Aromatic)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	130
TPH (C8 - C10 Aromatic)	mg/kg	<0.1	3.8	<0.1	<0.1	<0.1	<0.1	2	0.24	<0.1	<0.1	34
TPH (C10 - C12 Aromatic)	mg/kg	<1	<10	<1	<1	<10	<10	96	6	<1	<1	74
TPH (C12 - C16 Aromatic)	mg/kg	<1	<10	2	<1	<10	<10	190	14	<1	<1	140
TPH (C16 - C21 Aromatic)	mg/kg	2	38	3	<1	13	<10	140	6	<1	<1	260
TPH (C21 - C35 Aromatic)	mg/kg	6	120	8	<1	46	<10	<10	<1	<1	<1	1100
TPH (C35 - C44 Aromatic)	mg/kg	<1	<10	<1	<1	<10	<10	<10	<1	<1	<1	1100

¹ S4UL quoted is for Chromium III

² Results assessed against Category 4 Screening Level

 $^{\rm 3}\,$ Total Mercury concentration assessed against SGV for inorganic mercury

⁴ Assessed against Dutch Intervention Value

⁵ Analysis does not separate benzo(b)fluoranthene and benzo(k)fluoranthene

⁶ SGV for m-xylene 240mg/kg and for p-xylene 230mg/kg

 $^7\,$ S4UL of 65,000mg/kg for aliphatic C16 - C35 $\,$

FIGURES

AND	Er Er	Gate Hour Idon Bank	MP 80 Wks disused	Garrat
in the second se	15 MP Endone Babarson	THE SITE	Lawn Fm Park Fm Park Fm Stanley	AND A CLI
Baddēley Green	CH Sta M 240 Ho Baddeley Light Oaks	nley loor Plaza	Bagnall Newnouse	Ton Moor Ha
Reproduced from the 0 Spilman Associates Lir Licence No: AL100014	Drdnance Survey Map © Crow mited, 38 South Avenue, Stourbridg 1630 ₋	vn Copyright ge, DY8 3XY		
SPILMAN ASSOCIATES Geotechnical & Environmental Engineers	Client Humphries Builders Scheme Endon Riding Scho	s Limited pol, Endon	Title Site Location Pla	an
Tel: 01384 820578 Fax: 01384 823251	Date May 2017	Ref J17032/01	Scale 1: 25,000	Fig 1

APPENDIX A

David Tatton Architect

4 CHURCH BANK, KEELE, STAFFORDSHIRE. ST5 5AT. TEL 01782 619522 MOBILE 07748 385590 mail@davidtattonarchitects.net

CLIENT	PROJECT	DRAWING	SCALE	DWG.NO.	$ _{2} \cap 2$
Humphries Builders Itd	Endon Ridina School	Sketch 2	1/500 @A4		115/02
	Endon Riding School			DATE	March. 2017. REV
APPENDIX B

	LEGEND
	\triangle ST01 Control Station
	BU Bush
	Tree
	Hedge
	Foliage
	Existing Building
	50.0 Contour
	AV Air Valve B Bollard BH Borehole
	BIN Bin BM Bench Mark
	BS Bus Stop BSW Breather Switch BT BT Inspection Cover
TOTAL GREEN FIELD AREA – 32,248.8M2 TOTAL BROWN FIELD AREA – 6,480.1M2	2 BU Bush CAT Road Stud C/B Closed Boarded Fence
(INC. BUILDING AREA OF – 2,536.3M2)	CC CCTV CL Cover Level C/L Chain Link Fence
	CP Concrete Paving CTV CTV Cover DK Drop Kerb
	DP Downpipe EB Electricity Control Box EL Eaves Level
	EP Electricity Pole ER Earthing Rod FFL Finished Floor Level
	FH Fire Hydrant FP Flag Pole GL Ground Level
	GP Gate Post GV Gas Valve
	IC Inspection Cover IL Invert Level
	JB Junction Box KO Kerb Outlet I/R Iron Railings
	LC Lighting Colum LHT Light Height LP Lamp Post
	MG Multi Girth Tree MH Manhole Cover MK Marker Post
	MP Mile Post MS Mile Stone Marker
	OHC Overhead Cable P Post
	PB Post Box PE Pipe PM Parking Meter
	P/R Post & Rail Fence P/W Post & Wire Fence PYL Electricity Pylon
	RE Rodding Eye RL Ridge Level RS Road Sian
	R/W Retaining Wall SL Soffit Level SP Sign Post
	SV Stop Valve SY Stay Wire
	TH Threshold Level TL Traffic Light
	IP Telegraph Pole TS Tree Stump TV Cable TV Inspection Cover
	VP Vent Pipe WL Water Level WM Water Meter
	W/M Wire Mesh Fence WO Wash Out
	<u></u> 00
	CONTROL SCHEDULENameEastingNorthingLevelST01.392707.553.352197.202.162.852
	ST02 392650.083 352192.882 160.830 ST03 392634.549 352214.303 159.255 ST04 392636.640 352263.124 158.799
	ST05 392657.949 352263.566 157.591 ST20 392709.575 352244.152 160.384
	A Added Areas RM 08/13 50N 000000000000000000000000000000000000
	BENCH MARK INFORMATION
	SHEET LAYOUT PLAN
	Sheet 1
	Sheet 1 of 1
	AIRD GROUP CHARTERED SURVEYORS & CONSULTING ENGINEERS incorporating Aird Development Services, Aird Geomatics, Aird Consulting Engineers & Aird Associates
	1st Floor, 68 Marsland Road Sale Manchester
	Tel: 0161 973 8500 Fax: 0161 973 8505 Website: www.airdgroup.co.uk Email: ads@airdgroup.co.uk
	Edinburgh Tel: 0131 332 6888 Fax: 0131 332 7766 Glasgow Tel: 0141 644 1729 Fax: 0141 644 1730
	DOLPHIN LAND
	RIDING SCHOOL
	TOPOGRAPHICAL SURVEY
	$\frac{\text{Drawing No. }M/\text{DLD}/13/005/001}{\text{Drawing No. }M/\text{DLD}/13/005/001}$
	DRAWN BY: RM SCALE: DATE: CHECKED BY: RP 1:500 @ A0 20.08.1.3

APPENDIX C

APPENDIX D

Spilman Associates 38 South Avenue				MINI RIG BOREHOLE RECORD								
	Stourbrid West Mic	lge dlands	Site Locatio	on	Endon Riding School, Sta	anley Moss Lane,	Endon		BH1			
	DY8 3XY	/	Client Name	Э	Humphries Builders Limit	ed			Job No.			
0	01384 8	20578 tel	Date of Dril	ling	24/04/17	Grid Ref			J17032			
5	Strata Depth (m)	Sample Depth (m)	Strata Descri	iption			Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)			
	0.00		Concrete pavin	g slab (over sand (MADE GROUND)							
H	0.50	-	Grey brown slig	intly sa								
			Soft to firm mot CLAY (GLACI/	tled gre	ey and light brown slightly sandy _)	slightly gravelly		SV 38/42/40 kN/m ²				
1				SPT N = 11								
	1.50											
			CLAY (GLACIAL TILL)									
2			becoming are	v helo	w 2 20m with occasional thin sa	ad bands	2	SPT N = 23				
			becoming gro	Jy DCIO								
3							3	SPT N = 12				
4								SV 64/58/61 kN/m ² SPT N = 13				
4	4.45						***************************************					
	4.43											
5							5					
							1 6					
6							6					
7							7					
8							8					
Q												
Ĭ							5					
Η												
	ey to s	amples/in situ Disturbed	tests:-	Rema 1	arks:- 1. No groundwater encounte	red						
B U	B Bulk U Undisturbed											
V S	/ PT	Water Standard Pen	etration Test									
C N	PT I	Cone Penetra N value	tion Test									

	Spilman Associates 38 South Avenue Stourbridge			MINI RIG BOREHOLE RECORD									
	Stourbric	lge Ige	Site Locatio	n Endon R	iding School, Sta	anley Moss Lane,	Endon		BH2				
	DY8 3XY	/	Client Name	e Humphrie	es Builders Limit	ed			Job No.				
	01384 8	20578 tel	Date of Dril	ling 24/04/17		Grid Ref			J17032				
	Strata Depth (m)	Sample Depth (m)	Strata Descr	ption		I	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)				
Π	0.00		Grey silty sand	/ gravel of roadstor	ne (MADE GROUNI))							
1			Firm grey brow	n sandy gravelly Cl	LAY (GLACIAL TILL	.)		SPT N = 8 SV 72/84/75 kN/m ²					
2	1.60		Firm grey slight	ly sandy gravelly C	CLAY (GLACIAL TIL	L)	2	SPT N = 8					
			very silty fron	n 2.60m to 3.60m				SV 52/49/58 kN/m ²					
3							3	SPT N = 12					
4			becoming ve	ry stiff at 4.45m			4	SPT N = 29 SPT N = 52					
5	4.83						5	for 225mm					
7							7						
9							9						
	Key to s 3 J W SPT CPT N	amples/in situ Disturbed Bulk Undisturbed Water Standard Pen Cone Penetra N value	tests:- etration Test tion Test	Remarks:- 1. No grou 2. Slotted surface cover	undwater encountere 50mm ID HDPE fror to 0.50m with bento	d n 0.50m to 4.50m with nite seal. Pipe cappe	n pea gravel d with bung	surround. Plain p and gas tap in sto	ipe from pcock type				

	Spilman Associates 38 South Avenue			MINI RI	G BOREH	OLE RECOF	RD		BH No.			
	38 South Stourbrid	l Avenue lge Ilands	Site Locatio	n Endon Ridir	ng School, Sta	inley Moss Lane, I	Endon		BH3			
	DY8 3XY	/	Client Name	Humphries	Builders Limit	ed			Job No.			
	01384 8	20578 tel	Date of Drill	ing 24/04/17		Grid Ref			J17032			
	Strata Depth (m)	Sample Depth (m)	Strata Descri	ption			Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)			
h	0.00		Tarmac over bro	own sandy gravel of ro	oadstone (MADE	GROUND)						
	0.35		Firm brown san	dy silt (ORIGINAL TO								
	0.80		Soft to firm grey	brown very sandy gra	very sandy gravelly CLAY (GLACIAL TILL)							
1							1					
	1.50		Medium dense	prown and grey browr	n very gravelly SA	ND (GLACIAL TILL)						
2	2.10		Firm becoming	stiff arey slightly sand			2	SPT N = 11				
				sun groy signity sand								
								SPT N = 13				
3												
4							4	SPT N = 15				
								SPT N = 54				
5	5.20 5.38		Very weak black	carbonaceous MUD	STONE (BOWLA	ND SHALE)		for 225mm				
6							6					
7							7					
ĺ												
8							8					
0												
a							9					
	Key to s	amples/in situ	tests:-	Remarks:-								
 	D 3 J M SPT CPT N	Disturbed Bulk Undisturbed Water Standard Pen Cone Penetra N value	etration Test tion Test	1. Groundwat 2. Hydrocarb 3. Slotted 50r surface to cover	ter encountered a on odour 0.80m to mm ID HDPE fror 0.50m with bento	t 2.00m o 2.10m n 0.50m to 5.00m with nite seal. Pipe capped	pea gravel I with bung	surround. Plain p and gas tap in sto	ipe from pcock type			

	Spilman	Associates		MINI RIG BOREHOLE RECORD									
	Stourbrid West Mid	ige diands	Site Locatio	n E	Endon Riding School, Sta	anley Moss Lane, I	Endon		BH4				
	DY8 3XY	(Client Name	e F	Humphries Builders Limit	ed			Job No.				
	01384 8	20578 tel	Date of Drill	ing 2	24/04/17	Grid Ref			J17032				
	Strata Depth (m)	Sample Depth (m)	Strata Descri	ption		1	Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)				
	0.00		Tarmac over roa	adstone	(MADE GROUND)		<u> </u>						
1	1.50		Medium dense (GLACIOFLUVI Medium dense (GLACIOFLUVI	red brow	/n, orange brown and brown sl	ightly silty SAND	1	SPT N = 18					
2							2	SPT N = 16 SPT N = 13					
4	4.30 4.45		Very weak grey MUE	STONE (F	BOWLAND SHALE)		4	SPT N = 48					
5							5						
8							9						
	Key to s D B U W SPT CPT N	amples/in situ Disturbed Bulk Undisturbed Water Standard Pen Cone Penetra N value	tests:- etration Test tion Test	Remark 1. 2. 3.	(s: Groundwater encountered a Borehole unstable below 3. Slotted 50mm ID HDPE fror surface to 0.50m with bento cover	at 4.00m 00m n 0.50m to 3.00m with nite seal. Pipe capped	pea gravel with bung	surround. Plain p and gas tap in sto	ipe from pcock type				

Spilman Associates 38 South Avenue		Associates		MINI RIG BOREHOLE RECORD										
	Stourbrid West Mic	lge lands	Site Locatio	on E	ndon Riding School, St	anley Moss Lane,	Endon		BH5					
	DY8 3XY	(Client Name	• Н	umphries Builders Limit	ed			Job No.					
	01384 8	20578 tel	Date of Drill	ling 24	4/04/17	Grid Ref			J17032					
	Strata Depth (m)	Sample Depth (m)	Strata Descri	ption			Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)					
	0.00		Tarmac over roa	adstone	(MADE GROUND)									
1	0.30		Loose brown an concrete (MAD	nd grey cl E GROU	ayey sandy gravel with fragm ND)		SPT N = 11							
2	1.23		Firm mottled gre	eenish bro)	own and grey slightly sandy s	22	SPT N = 11							
3							3	SPT N = 7						
4	4.30 4.45		becoming gre	ey with ma	n many mudstone fragments at 4.00m			SPT N = 33						
5							5							
6							6							
7							7							
8							8							
9							9							
	Key to s D B U W SPT CPT N	amples/in situ Disturbed Bulk Undisturbed Water Standard Pen Cone Penetra N value	tests:- etration Test tion Test	Remarks 1.	s:- Groundwater encountered a	at 4.00m								

	Spilman Associates 38 South Avenue Stourbridge				MINI RIG BORE	IOLE RECO	RD		BH No.	
	Stourbrid West Mic	lge llands	Site Locatio	on	Endon Riding School, S	anley Moss Lane,	Endon		BH6	
	DY8 3XY	,	Client Name	e	Humphries Builders Lim	ted			Job No.	
	01384 8	20578 tel	Date of Drill	ling 2	24/04/17	Grid Ref			J17032	
	Strata Depth (m)	Sample Depth (m)	Strata Descri	iption			Legend	Casing and Test Record	Water/ <i>Reduced</i> Levels (m)	
	0.00		Tarmac over loc concrete rubble	ose grey e (MAD	y brown sandy silty gravel with E GROUND)	some brick and				
	0.55		Firm mottled gre	eenish g	grey and brown clay(MADE G	ROUND)				
1	0.95 1.80		Very soft to soft with some brick	t dark gr fragme	rey and brown slightly sandy slightly gravelly clay ents and inclusions of silt (MADE GROUND)			SPT N = 1		
2			Soft becoming f gravelly CLAY	firm at 2 (GLACI	.00m mottled greenish grey ar AL TILL)	nd brown slightly sandy	2	SPT N = 23		
3							3	SPT N = 22		
4			becoming gre	ey with r	nany mudstone fragments at 4	.00m	4	SPT N = 8		
								SPT N = 10		
5	E 4E						5	SPT N = 19		
	5.45									
6							6			
7							7			
8							8			
0										
9										
	Kev to e	amples/in situ	tests'-	Remar	ks:-					
	Ney to S D B U W SPT CPT N	amples/in situ Disturbed Bulk Undisturbed Water Standard Pen- Cone Penetra N value	etration Test tion Test	1. 2.	No groundwater encounter Slotted 50mm ID HDPE fro surface to 0.50m with bent cover	ed m 0.50m to 5.00m with onite seal. Pipe capped	pea gravel with bung	surround. Plain p and gas tap in sto	pipe from opcock type	

APPENDIX E

SUMMARY OF SPT 'N' RESULTS

Borehole	Depth	(m)	N Value	Blows for 75mm Penetration						
BH1	1.00 -	1.45	11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	4	
	2.00 -	2.45	23	3	3	4	5	6	8	
	3.00 -	3.45	12	1	2	2	2	3	5	
	4.00 -	4.45	13	2	3	3	3	4	3	
BH2	1.00 -	1.45	8	2	2	1	2	2	3	
	2.00 -	2.45	8	1	1	2	2	2	2	
	3.00 -	3.45	12	2	2	3	3	3	3	
	4.00 -	4.45	29	4	4	6	7	8	8	
	4.45 -	4.83	52 for 225mm	10	11	15	17	20		
BH3	1.00 -	1.45	12	0	0	0	6	3	3	
	2.00 -	2.45	11	1	1	2	2	2	5	
	3.00 -	3.45	13	2	3	2	3	3	5	
	4.00 -	4.45	15	5	3	4	4	3	4	
	5.00 -	5.38	54 for 225mm	4	8	16	18	20		
BH4	1.00 -	1.45	18	2	2	2	4	6	6	
	2.00 -	2.45	16	2	2	3	5	4	4	
	3.00 -	3.45	13	3	3	3	3	4	3	
	4.00 -	4.45	48	2	3	5	8	20	15	
BH5	1.00 -	1.45	11	2	2	3	3	2	3	
	2.00 -	2.45	11	2	2	2	3	3	3	
	3.00 -	3.45	7	1	2	1	2	2	2	
	4.00 -	4.45	33	3	5	7	7	9	10	
BH6	1.00 -	1.45	1	2	1	0	1	0	0	
	2.00 -	2.45	23	2	3	4	7	6	6	
	3.00 -	3.45	22	5	3	5	5	3	9	
	4.00 -	4.45	8	2	2	1	2	2	3	
	4.50 -	4.95	10	2	3	2	2	2	4	
	5.00 -	5.45	19	3	4	4	5	5	5	

APPENDIX F

PID SCREENING RESULTS

Borehole	Depth (m)	PID Reading (ppm)
BH1	0.25	0.0
	0.80	0.0
	1.70	0.0
	2.70	0.0
	3.70	0.0
BH2	0.10	10.6
	0.40	0.0
	1.50	0.0
	2.00	0.0
BH3	0.40	0.0
	1.00 - 1.40	63.5
	1.50 - 2.00	24.3
	2.50 - 2.80	6.8
	3.50 - 3.80	2.4
	4.50 - 5.00	2.3
	5.30 - 5.45	0.4
BH4	0.20	0.0
	1.00	0.2
	3.00	0.0
	4.00	0.0
	4.35	0.0
BH5	0.35	0.0
	1.00	0.0
	1.50	0.0
	2.50	0.0
	3.50	0.0
BH6	0.40	0.0
	1.40	0.0
	1.80	0.0
	2.50 - 3.00	0.0

APPENDIX G

SPIL Geoteci	MAN A		OCI/		S ers		Gas Monitoring Record Form					
38 South Stourbrid	h Avenue dge dlands DX	8 3 X V					Job No	o: Endor (J170	n Riding S 32/01)	School, Endon		
Tel:	01384 82057	78					Date:	24/04				
Ma atha	r Condition		waaat lig	ht rain			Opera	Operator: HDS				
Barome	etric Pressu	re Trenc	d (24 hr)	:			Suriac	Surace Ground Conditions. Wet				
Ambie Conce (% Vol	nt Air ntration)	Meth	ane		Car	bon D	ioxide	Oxygen		Barometric Pressure, Mb		
Before		0.0			0.0			20.5		1006		
During												
After		0.0			0.0		20.5 1			1006		
Monito	oring		Ga	s Con	centra	ation (%)					
Point		Peak			Stea	ady	•					
BH No	Depth to Water (m bgl)	CH4	CO ₂	O ₂	CH₄	CO ₂	O ₂	Gas Emission Rate (I/hr)	Observ Comm	vations/ ents		
BH2	1.96				0.0	0.2	20.0	<0.5	PID 0.0)ppm		
BH3	1.66				2.6	2.1	11.6	<0.5	PID 13	.0ppm		
BH4	2.29				0.0	0.5	20.1	<0.5	PID 0.3	Bppm		
BH6	Dry				0.0	3.3	13.2	<0.5	PID 0.0)ppm		

SPILMAN ASSOCIATES							Gas Monitoring Record Form				
38 South Stourbrid	h Avenue dge	nvironr	nentai E	Ingine	ers		Job No	o: Endo (J170	n Riding S)32/01)	School, Endon	
West Mi	dlands DY8	8 3XY					Date:	27/04	/17		
101.	01004 02007	0					Opera	tor: HDS			
Weathe	r Conditions	s: Sunr	ny/Rain				Surfac	e Ground Co	nditions:	Damp	
Barome	etric Pressur	e Trenc	l (24 hr)	:							
Ambie Conce (% Vol	nt Air ntration)	Meth	ane		Car	bon Di	oxide	Oxygen		Barometric Pressure, Mb	
Before		0.0			0.0			20.4		998	
During											
After		0.0			0.0			20.4		998	
Monito	oring		Ga	s Con	centra	ation (%)				
Point		Peak			Stea	ady					
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Commo	vations/ ents	
BH2	0.77				0.0	0.4	20.1	<0.5	PID 0.0)ppm	
BH3	1.62				3.0	3.4	6.2	<0.5	PID 7.2	2ppm	
BH4	2.28				0.0	3.5	17.0	<0.5	PID 0.0)ppm	
BH6	3.57				2.1	6.8	8.6	<0.5	PID 0.0)ppm	

SPILMAN ASSOCIATES							Gas Monitoring Record Form				
Geoteci 38 Souti Stourbrid	hnical and E h Avenue dge	invironr	nental E	Engine	ers		Job No	o: Endo (J170	n Riding S)32/01)	School, Endon	
West Mi	01284 82053	8 3XY					Date:	Date: 02/05/17			
Tel.	01304 02037	0					Opera	Operator: HDS			
Weathe	r Conditions	s: Sunr	יאט ייייי				Surfac	e Ground Co	nditions:	Damp	
Barome	etric Pressur	e Trenc	1 (24 hr)	:							
Ambie Conce (% Vol	nt Air ntration	Meth	ane		Car	bon Di	ioxide	Oxygen		Barometric Pressure, Mb	
Before		0.0			0.0			20.3		1002	
During											
After		0.0			0.0			20.3		1002	
Monito	oring		Ga	s Con	centra	ation ('	%)				
Point		Peak			Stea	ady					
BH No	Depth to Water (m bgl)	CH₄	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Comm	vations/ ents	
BH2	0.77				0.0	0.2	20.0	<0.5	PID 0.2	1ppm	
BH3	1.64				0.0	2.1	15.9	<0.5	PID 4.7	7ppm	
BH4	2.28				0.0	3.9	16.8	<0.5	PID 0.5	ōppm	
BH6	3.59				2.5	9.1	3.1	<0.5	PID 0.0)ppm	

SPILMAN ASSOCIATES								Gas Monitoring Record Form			
38 South Stourbrid	hnical and E h Avenue dge	nvironi	nental E	ngine	ers		Job No	o: Endo (J170	n Riding S 032/01)	School, Endon	
	01384 82053	8 3X Y 78					Date:	Date: 05/05/17			
Tel.	01304 02031	10					Opera	tor: HDS			
Weathe	r Conditions	s: Sunr	าy				Surfac	e Ground Co	nditions:	Dry	
Barometric Pressure Trend (24 hr):											
Ambient AirMethaneCarbon IConcentrationMethaneCarbon I(% Vol)Carbon ICarbon I					bon Di	ioxide	oxide Oxygen Barometric Pressure, M				
Before		0.0			0.0			20.8		1005	
During											
After		0.0 0.0						20.8		1005	
Monito	oring		Ga	s Con	centra	ation (%)				
Point		Peak			Stea	ady					
BH No	Depth to Water (m bgl)	CH4	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Comm	vations/ ents	
BH2	0.81				0.0	0.2	19.9	<0.5	PID 0.3	3ppm	
BH3	1.61				4.4	4.3	2.3	<0.5	PID 3.1	1ppm	
BH4	2.30				0.0	3.6	17.3	<0.5	PID 0.4	1ppm	
BH6	3.69				2.1	8.9	1.5	<0.5	PID 0.4	1ppm	

SPILMAN ASSOCIATES								Gas Monitoring Record Form			
38 South Stourbri	h Avenue dge	nvironr	nentai t	Ingine	ers		Job No	o: Endo (J170	n Riding S)32/01)	School, Endon	
West Mi	dlands DY	8 3XY					Date:	15/05	5/17		
TEI.	01304 02037	0					Opera	tor: HDS			
Weathe	r Conditions	s: Rain	ing				Surfac	e Ground Co	nditions:	Wet	
Barometric Pressure Trend (24 hr):											
Ambient AirConcentration(% Vol)			Car	bon Di	oxide	oxide Oxygen		Barometric Pressure, Mb			
Before	Before 0.0 0.0				0.0			20.5		999	
During											
After		0.0 0.0						20.5		999	
Monito	oring	Gas Concentration (%)				
Point		Peak			Stea	ady					
BH No	Depth to Water (m bgl)	CH4	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (l/hr)	Observ Commo	vations/ ents	
BH2	0.88				0.0	0.4	20.2	<0.5	PID 0.4	1ppm	
BH3	1.61				0.0	2.2	16.0	<0.5	PID 13	.6ppm	
BH4	2.34				0.0	4.2	17.6	<0.5	PID 0.2	2ppm	
BH6	3.51				0.0	9.2	2.5	<0.5	PID 0.6	Sppm	

SPILMAN ASSOCIATES								Gas Monitoring Record Form				
38 South Stourbri	nnical and E h Avenue dge	nvironr	nental E	nginee	ers		Job No	o: Endo (J170	n Riding S)32/01)	School, Endon		
West Mi	odands DY	8 3XY					Date:	19/05	5/17			
Tel.	01304 02057	0					Opera	tor: HDS				
Weathe	r Conditions	s: Rain	ing				Surfac	e Ground Co	nditions:	Wet		
Barometric Pressure Trend (24 hr):												
Ambient Air ConcentrationMethaneCarl(% Vol)Carl				bon Di	oxide Oxygen			Barometric Pressure, Mb				
Before	Before 0.0 0.0						20.6		1006			
During												
After		0.0 0.0						20.6		1006		
Monito	oring	Gas Concentration (%)					
Point		Peak			Stea	ady						
BH No	Depth to Water (m bgl)	CH4	CO ₂	O ₂	CH ₄	CO ₂	O ₂	Gas Emission Rate (I/hr)	Observ Commo	vations/ ents		
BH2	0.85				0.0	0.3	20.0	<0.5	PID 0.1	1ppm		
BH3	1.62				0.0	2.3	17.1	<0.5	PID 12	.1ppm		
BH4	2.31				0.0	3.9	16.4	<0.5	PID 0.3	3ppm		
BH6	3.55				0.0	8.7	3.4	<0.5	PID 0.2	2ppm		

APPENDIX H

Concept Life Sciences is a trading name of Scientific Analysis Laboratories registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Report Number: 649196-1

Date of Report: 04-May-2017

Customer: Spilman Associates 38 South Avenue Stourbridge. WEST MIDLANDS DY8 3XY

Customer Contact: Mr Harry Spilman

Customer Job Reference: J17032 Customer Site Reference: Endon Riding School Date Job Received at Concept: 25-Apr-2017 Date Analysis Started: 26-Apr-2017 Date Analysis Completed: 04-May-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept SOPs

Report checked and authorised by : Sara Abou-Shakra Project Manager Issued by : Sara Abou-Shakra Project Manager

Page 1 of 6 649196-1

Analysed as Soil

Soil

MCERTS Preparation

			-						
		0	Concep	ot Reference	649196 001	649196 002	649196 003	649196 004	649196 005
		Custor	ner Sampi	e Reference	BH1	BH2	BH3	BH4	BH5
			B	Ten Denth	0.25	0.10	0.40	0.20	0.35
			D.	Top Depth	24 APP 2017	24 APP 2017	24 APP 2017	24 APP 2017	24 APP 2017
			D		Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil
			1	Туре	Candy Con	Calley Coll	Calley Soli	Candy Con	
Determinand	Method	Test Sample	LOD	Units					
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	14	7.3	22	5.2	10
Arsenic	T6	M40	2	ma/ka	5	19	11	13	10
Boron (water-soluble)	T6	AR	1	ma/ka	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	ma/ka	<1	1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	10	23	15	17	15
Chromium VI	T6	AR	1	mg/kg	<1	<1	<1	<1	<1
Copper	T6	M40	1	mg/kg	11	140	22	16	32
Lead	T6	M40	1	mg/kg	44	97	63	53	110
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	8	25	12	19	15
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	32	170	90	56	100
Cyanide(free)	T546	AR	1	mg/kg	<1	<1	<1	<1	<1
Phenols(Mono)	T546	AR	1	mg/kg	<1	<1	<1	<1	<1
Cyanide(Complex)	T85	AR	1	mg/kg	<1	<1	<1	<1	<1
Cyanide(Total)	T546	AR	1	mg/kg	<1	<1	<1	<1	<1
SO4(Total)	Т6	A40	0.01	%	0.04	0.10	0.07	0.02	0.76
Sulphur(Free)	T2	AR	500	mg/kg	<500	<500	<500	<500	<500
рН	T7	AR			8.2	8.4	7.9	7.9	8.9
Sulphide	T4	AR	10	mg/kg	45	35	13	<10	340
Asbestos ID	T27	AR			N.D.	Chrysotile Fibres Detected	N.D.	N.D.	N.D.
Naphthalene	T207	M105	0.1	mg/kg	<0.1	1.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	3.6	<0.1	<0.1	0.8
Anthracene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	0.2
Fluoranthene	T207	M105	0.1	mg/kg	0.3	5.8	0.2	<0.1	1.2
Pyrene	T207	M105	0.1	mg/kg	0.3	5.1	0.2	<0.1	1.0
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.2	2.1	<0.1	<0.1	0.5
Chrysene	T207	M105	0.1	mg/kg	0.2	4.1	<0.1	<0.1	0.5
Benzo(b/k)Fluoranthene	T207	M105	0.1	mg/kg	0.4	3.1	0.2	<0.1	0.9
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.2	1.4	<0.1	<0.1	0.5
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	0.3
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	⁽⁹⁾ <1.0	<0.1	<0.1	0.3
PAH(total)	T207	M105	0.1	mg/kg	1.5	26	0.5	<0.1	6.4
Benzene	T209	M105	10	µg/kg	(13) <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	23	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	16	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0,100	ma/ka	<0,100	<0.100	<0.100	<0,100	<0,100
TPH (C6-C8 aliphatic)	T209	M105	0,10	mg/ka	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	ma/ka	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/ka	(13) <1	^(9,13) <10	(13) <1	(13) <1	(13,9) <10
TPH (C12-C16 aliphatic)	T206	M105	2	mg/ka	(13) <2	(13,9) <10	(13) <2	(13) <2	(13,9) <10
TPH (C16-C21 aliphatic)	T206	M105	1	ma/ka	(13) <1	^(9,13) <10	(13) <1	(13) <1	^(9,13) <10
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	(13) <4	(13) 36	(13) <4	(13) <4	^(9,13) <10
TPH (C35-C44 aliphatic)	Т8	M105	1	mg/kg	(13) <1	^(9,13) <10	(13) <1	(13) <1	^(9,13) <10
TPH (Aliphatic) total	T85	M105		mg/kg	⁽¹³⁾ N.D.	⁽¹³⁾ 36	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.
			•				•	•	•

Analysed as Soil

Soil

MCERTS Preparation

			Concep	t Reference	649196 001	649196 002	649196 003	649196 004	649196 005
		Custon	ner Sampl	e Reference	BH1	BH2	BH3	BH4	BH5
			В	ottom Depth	0.25	0.10	0.40	0.20	0.35
				Top Depth					
			Da	ate Sampled	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units					
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	3.8	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	⁽¹³⁾ <1	^(13,9) <10	⁽¹³⁾ <1	⁽¹³⁾ <1	^(13,9) <10
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	⁽¹³⁾ <1	^(13,9) <10	⁽¹³⁾ 2	⁽¹³⁾ <1	^(13,9) <10
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	⁽¹³⁾ 2	(13) 38	⁽¹³⁾ 3	⁽¹³⁾ <1	⁽¹³⁾ 13
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	⁽¹³⁾ 6	⁽¹³⁾ 120	⁽¹³⁾ 8	⁽¹³⁾ <1	⁽¹³⁾ 46
TPH (C35-C44 aromatic)	Т8	M105	1	mg/kg	⁽¹³⁾ <1	^(9,13) <10	⁽¹³⁾ <1	⁽¹³⁾ <1	^(9,13) <10
TPH (Aromatic) total	T85	M105		mg/kg	(13) 8.0	⁽¹³⁾ 160	⁽¹³⁾ 13	⁽¹³⁾ N.D.	(13) 59
TPH (Aliphatic+Aromatic) (sum)	T85	M105		mg/kg	(13) 8.0	(13) 200	⁽¹³⁾ 13	⁽¹³⁾ N.D.	⁽¹³⁾ 59

Analysed as Soil

Soil

MCERTS Preparation

			Concer	ot Reference	649196 006	649196 007	649196 008	649196 009	649196 010
		Custor	ner Samp	le Reference	BH6	BH3	BH3	BH3	BH3
			В	ottom Depth	0.40	01.50	2.00	2.80	4.50
				Top Depth		1.0	1.50	2.50	
			D	ate Sampled	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units					
Retained on 10mm sieve	T2	M40	0.1	%	<0.1	<0.1	<0.1	<0.1	<0.1
Moisture @105C	T162	AR	0.1	%	15	14	8.3	12	18
Arsenic	T6	M40	2	mg/kg	13	-	-	-	-
Boron (water-soluble)	Т6	AR	1	mg/kg	<1	-	-	-	-
Cadmium	T6	M40	1	mg/kg	2	-	-	-	-
Chromium	Т6	M40	1	mg/kg	18	and the second sec	-	-	-
Chromium VI	T6	AR	1	mg/kg	<1		-	-	-
Copper	T6	M40	1	mg/kg	37	-	-	-	-
Lead	T6	M40	1	mg/kg	480		-	-	-
Mercury	T6	M40	1	mg/kg	1	-	-	-	-
Nickel	T6	M40	1	mg/kg	20	-	· · ·	-	-
Selenium	T6	M40	3	mg/kg	<3		-	-	-
Zinc	T6	M40	1	mg/kg	180	-	-	-	-
Cyanide(free)	1546	AR	1	mg/kg	<1	-	-	-	-
Phenois(Mono)	1546	AR	1	mg/kg	<1	-	•	-	-
Cyanide(Complex)	160	AR	1	mg/kg	<1	-	-	-	-
	1040 Te	AR	0.01	nig/kg	<1		-	-	-
Sulphur(Free)	T2	AR	500	70 ma/ka	<500				-
nH	T7	AR	500	iiig/kg	93		_		_
Sulphide	T4	AR	10	mg/kg	230		dian - Juli	-	-
Asbestos ID	T27	AR			N.D.	-	-	-	-
Naphthalene	T207	M105	0.1	ma/ka	<0.1	1		-	-
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1			-	-
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	-	- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	-	-
Fluorene	T207	M105	0.1	mg/kg	<0.1			-	-
Phenanthrene	T207	M105	0.1	mg/kg	0.4			-	-
Anthracene	T207	M105	0.1	mg/kg	0.1			-	-
Fluoranthene	T207	M105	0.1	mg/kg	0.6	-	- 6	-	-
Pyrene	T207	M105	0.1	mg/kg	0.6	-	-	-	-
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	0.4	-	-	-	-
Chrysene	T207	M105	0.1	mg/kg	0.4	-	-	-	-
Benzo(b/k)Fluoranthene	T207	M105	0.1	mg/kg	0.8	-	-	-	-
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	0.4	-	-	-	-
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	0.2	-	-	-	-
Dibenzo(an)Anthracene	1207	M105	0.1	mg/kg	<0.1		-	-	-
Benzo(gni)Perylene	T207	M105	0.1	mg/kg	0.3	-	-	-	-
	1207	WITUS	0.1	шу/ку	4.5	-	-	-	-
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	33	27
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10
O Xylene	1209	M105	10	µg/kg	<10	<10	<10	<10	<10
	1209	M105	10	µg/кg	<10	<10	<10	16	14
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	16	3.7	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	(9,13) <10	⁽¹³⁾ 210	(13) 21	(13) 1	(13) 2
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	^(9,13) <10	(13) 740	(13) 90	(13) 7	(13) 7
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	^(9,13) <10	(13) 420	(13) 66	(13) 3	(13) 3
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	^(9,13) <10	(13) 220	(13) 29	(13) <4	(13) <4
TPH (C35-C44 aliphatic)	T8	M105		mg/kg	(13) < 10	(100, 13) <10	(13) <1	(13) <1	(13) <1
(Aliphatic) total	185	IVI105		mg/kg	(19) N.D.	1600	210	11	12
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10

Soil

Analysed as Soil

MCERTS Preparation

							-		
			Concep	t Reference	649196 006	649196 007	649196 008	649196 009	649196 010
		Custon	ner Sampl	e Reference	BH6	BH3	BH3	BH3	BH3
			В	ottom Depth	0.40	01.50	2.00	2.80	4.50
				Top Depth		1.0	1.50	2.50	
			Da	ate Sampled	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017	24-APR-2017
				Туре	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil	Sandy Soil
Determinand	Method	Test Sample	LOD	Units					
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	2.0	0.24	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	^(13,9) <10	⁽¹³⁾ 96	⁽¹³⁾ 6	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	^(13,9) <10	⁽¹³⁾ 190	⁽¹³⁾ 14	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	^(9,13) <10	⁽¹³⁾ 140	⁽¹³⁾ 6	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	^(13,9) <10	^(13,100) <10	⁽¹³⁾ <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (C35-C44 aromatic)	Т8	M105	1	mg/kg	^(9,13) <10	^(100,13) <10	⁽¹³⁾ <1	⁽¹³⁾ <1	⁽¹³⁾ <1
TPH (Aromatic) total	T85	M105		mg/kg	⁽¹³⁾ N.D.	(13) 430	⁽¹³⁾ 26	⁽¹³⁾ N.D.	⁽¹³⁾ N.D.
TPH (Aliphatic+Aromatic) (sum)	T85	M105		mg/kg	⁽¹³⁾ N.D.	(13) 2000	(13) 240	⁽¹³⁾ 11	⁽¹³⁾ 12

Index to symbols used in 649196-1

Value	Description
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
A40	Assisted dried < 40C
AR	As Received
N.D.	Not Detected
100	LOD determined by sample aliquot used for analysis
9	LOD raised due to dilution of sample
13	Results have been blank corrected.
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

Asbestos subcontracted to REC Asbestos
Report A to report soil samples only

Method Index

Value	Description
T2	Grav
T206	GC/FID (MCERTS)
T4	Colorimetry
T7	Probe
T85	Calc
T209	GC/MS (Head Space)(MCERTS)
T27	PLM
T6	ICP/OES
T8	GC/FID
T162	Grav (1 Dec) (105 C)
T207	GC/MS (MCERTS)
T546	Colorimetry (CF)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Retained on 10mm sieve	T2	M40	0.1	%	N	001-010
Moisture @105C	T162	AR	0.1	%	N	001-010
Arsenic	T6	M40	2	mg/kg	М	001-006
Boron (water-soluble)	T6	AR	1	mg/kg	N	001-006
Cadmium	T6	M40	1	mg/kg	М	001-006
Chromium	T6	M40	1	mg/kg	М	001-006
Chromium VI	T6	AR	1	mg/kg	N	001-006
Copper	T6	M40	1	mg/kg	М	001-006
Lead	T6	M40	1	mg/kg	M	001-006
Mercury	T6	M40	1	mg/kg	M	001-006
Nickel	T6	M40	1	mg/kg	M	001-006
Selenium	T6	M40	3	mg/kg	M	001-006
Zinc	T6	M40	1	mg/kg	M	001-006
Cyanide(free)	T546	AR	1	mg/kg	M	001-006
Phenols(Mono)	1546	AR	1	mg/kg	M	001-006
Cyanide(Complex)	T85	AR	1	mg/kg	N	001-006
Cyanide(Total)	T546	AR	1	mg/kg	M	001-006
SO4(Total)	16	A40	0.01	%	N	001-006
Sulphur(Free)	12	AR	500	mg/kg	N	001-006
pH	T7	AR			M	001-006
Sulphide	14	AR	10	mg/kg	N	001-006
Asbestos ID	T27	AR			SU	001-006
Naphthalene	T207	M105	0.1	mg/kg	M	001-006
Acenaphthylene	T207	M105	0.1	mg/kg	U	001-006
Acenaphthene	T207	M105	0.1	mg/kg	M	001-006
Fluorene	T207	M105	0.1	mg/kg	M	001-006
Phenanthrene	1207	M105	0.1	mg/kg	M	001-006
Anthracene	1207	M105	0.1	mg/kg	0	001-006
Fluoranthene	1207	M105	0.1	mg/kg	M	001-006
Pyrene	1207	M105	0.1	mg/kg	M	001-006
Chrusses	T207	M105	0.1	mg/kg	IVI	001-006
Chrysene Ronzo(h/k)Eluoronthono	T207	M105	0.1	mg/kg	IVI	001-006
Benzo(b)R)Fluoranthene	T207	M105	0.1	mg/kg	M	001-006
Indono(123-cd)Pyrono	T207	M105	0.1	mg/kg	M	001-006
Dibenzo(ab)Anthracene	T207	M105	0.1	mg/kg	M	001-006
Benzo(abi)Pervlene	T207	M105	0.1	mg/kg	M	001-006
PAH(total)	T207	M105	0.1	mg/kg		001-006
Benzene	T207	M105	10	ua/ka	M	001-000
Toluene	T209	M105	10	ug/kg	M	001-010
EthylBenzene	T209	M105	10	ug/kg	M	001-010
Methyl tert-Butyl Ether	T209	M105	10	ua/ka	м	001-010
O Xvlene	T209	M105	10	ua/ka	M	001-010
M/P Xvlene	T209	M105	10	µg/ka	M	001-010
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	N	001-010
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	N	001-010
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	N	001-010
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	N	001-010
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	М	001-010
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	М	001-010
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	М	001-010
TPH (C35-C44 aliphatic)	Т8	M105	1	mg/kg	N	001-010
TPH (Aliphatic) total	T85	M105		mg/kg	N	001-010
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	N	001-010
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	N	001-010
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	N	001-010
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	М	001-010
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	M	001-010
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	М	001-010
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	М	001-010
TPH (C35-C44 aromatic)	Т8	M105	1	mg/kg	N	001-010
TPH (Aromatic) total	T85	M105		mg/kg	N	001-010
TPH (Aliphatic+Aromatic) (sum)	T85	M105		mg/kg	N	001-010

Concept Life Sciences is a trading name of Scientific Analysis Laboratories registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Report Number: 651255-1

Date of Report: 10-May-2017

Customer: Spilman Associates 38 South Avenue Stourbridge. WEST MIDLANDS DY8 3XY

Customer Contact: Mr Harry Spilman

Customer Job Reference: J17032 Customer Site Reference: Endon Riding School Date Job Received at Concept: 25-Apr-2017 Date Analysis Started: 05-May-2017 Date Analysis Completed: 10-May-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept SOPs

Report checked and authorised by : Sara Abou-Shakra Project Manager Issued by : Sara Abou-Shakra Project Manager

Page 1 of 2 651255-1

Concept Re	eference:	651255						
Pro	ject Site:	Endon Ridi	Endon Riding School					
Customer Re	eference:	J17032						
Soil Miscellaneous		Analysed as Soil						
			Concep	t Reference	651255 001			
		Custor	ner Sampl	BH2 (649196/002)				
			Da	ate Sampled	24-APR-2017			
Determinand	Method	Test Sample	LOD	Units				
Asbestos Quantification	T27	AR	0.001	%	Chrysotile Fibres Detected			
					0.002			

Index to symbols used in 651255-1

Value	Description						
AR	As Received						
S	Analysis was subcontracted						
U	Analysis is UKAS accredited						

Notes

Asbestos subcontracted to REC Asbestos

Method Index

ValueDescriptionT27PLM

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Asbestos Quantification	T27	AR	0.001	%	SU	001

APPENDIX I

Concept Life Sciences is a trading name of Scientific Analysis Laboratories registered in England and Wales (No 2514788)

Concept Life Sciences

Certificate of Analysis

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel : 0161 874 2400 Fax : 0161 874 2468

Report Number: 651697-1

Date of Report: 12-May-2017

Customer: Spilman Associates 38 South Avenue Stourbridge. WEST MIDLANDS DY8 3XY

Customer Contact: Mr Harry Spilman

Customer Job Reference: J17032 Customer Site Reference: Endon Riding School Date Job Received at Concept: 05-May-2017 Date Analysis Started: 08-May-2017 Date Analysis Completed: 11-May-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept SOPs

Report checked and authorised by : Sara Abou-Shakra Project Manager Issued by : Sara Abou-Shakra Project Manager

Page 1 of 3 651697-1

Customer Reference: J17032 Water Analysed as Water TPH UKCWG **Concept Reference** 651697 001 651697 002 651697 003 Customer Sample Reference BH3 BH4 SW1 Date Sampled 04-MAY-2017 04-MAY-2017 04-MAY-2017 Test Sample Determinand Method LOD Units (13) <1 (13) <1 (13) <1 T54 Benzene AR 1 µg/l EthylBenzene T54 AR 1 <1 <1 <1 µg/l M/P Xylene T54 AR 1 <1 <1 <1 µg/l T54 Methyl tert-Butyl Ether AR 1 µg/l <1 <1 <1 O Xylene T54 AR 1 µg/l <1 <1 <1 Toluene T54 AR 1 µg/l <1 <1 <1 TPH (C5-C6 aliphatic) <0.010 T215 AR 0.010 <0.010 <0.010 mg/l TPH (C6-C8 aliphatic) T215 AR 0.010 <0.010 <0.010 <0.010 mg/l TPH (C8-C10 aliphatic) T215 AR 0.010 mg/l <0.010 <0.010 <0.010 TPH DW(C10-C12 aliphatic) T81 AR 0.01 (13) <0.01 (13) <0.01 (13) <0.01 mg/l (13) 0.03 ⁽¹³⁾ <0.01 ⁽¹³⁾ 0.10 TPH DW(C12-C16 aliphatic) T81 AR 0.01 mg/l (13) <0.01 (13) < 0.01 (13) 0.06 TPH DW(C16-C21 aliphatic) T81 AR 0.01 mg/l (13) <0.01 (13) <0.01 (13) <0.01 TPH DW(C21-C35 aliphatic) T81 AR 0.01 mg/l (13) <0.01 (13) < 0.01 (13) < 0.01 TPH (C35-C44 aliphatic) T81 AR 0.01 mg/l (13) 0.03 ⁽¹³⁾ N.D. ⁽¹³⁾ 0.16 TPH (Aliphatic) total T85 AR mg/l T215 TPH (C6-C7 aromatic) AR 0.010 mg/l <0.010 <0.010 <0.010 TPH (C7-C8 aromatic) T215 AR 0.010 mg/l < 0.010 < 0.010 < 0.010 TPH (C8-C10 aromatic) T215 AR 0.010 mg/l <0.010 <0.010 <0.010 (13) < 0.01 (13) <0.01 (13) < 0.01 TPH DW(C10-C12 aromatic) T81 AR 0.01 mg/l (13) <0.01 (13) < 0.01 (13) <0.01 TPH DW(C12-C16 aromatic) T81 AR 0.01 mg/l (13) < 0.01 (13) < 0.01 (13) < 0.01 TPH DW(C16-C21 aromatic) T81 AR 0.01 mg/l (13) < 0.01 (13) < 0.01 (13) < 0.01 TPH DW(C21-C35 aromatic) T81 AR 0.01 mg/l TPH (C35-C44 aromatic) T81 AR 0.01 (13) <0.01 (13) <0.01 (13) < 0.01 mg/l ⁽¹³⁾ N.D. (13) N.D. ⁽¹³⁾ N.D. TPH (Aromatic) total T85 AR mg/l TPH (Aliphatic+Aromatic) (sum) (13) 0.03 ⁽¹³⁾ N.D. ⁽¹³⁾ 0.16 T85 AR mg/l Total Petroleum Hydrocarbons (C5 - C10 aliphatic/aromatic) 0.010 T85 AR mg/l < 0.010 < 0.010 < 0.010

Index to symbols used in 651697-1

Value	Description					
AR	As Received					
N.D.	Not Detected					
13	Results have been blank corrected.					
U	Analysis is UKAS accredited					
N	Analysis is not UKAS accredited					

Method Index

Value	Description
T54	GC/MS (Headspace)
T81	GC/FID (LV)
T215	GC/MS (Headspace)(LV)
T85	Calc

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Benzene	T54	AR	1	µg/l	U	001-003
EthylBenzene	T54	AR	1	µg/l	U	001-003
M/P Xylene	T54	AR	1	µg/l	U	001-003
Methyl tert-Butyl Ether	T54	AR	1	µg/l	U	001-003
O Xylene	T54	AR	1	µg/l	U	001-003
Toluene	T54	AR	1	µg/l	U	001-003
TPH (C5-C6 aliphatic)	T215	AR	0.010	mg/l	Ν	001-003
TPH (C6-C8 aliphatic)	T215	AR	0.010	mg/l	N	001-003

Determinand		Test Sample	LOD	Units	Symbol	Concept References
TPH (C8-C10 aliphatic)	T215	AR	0.010	mg/l	N	001-003
TPH DW(C10-C12 aliphatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C12-C16 aliphatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C16-C21 aliphatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C21-C35 aliphatic)	T81	AR	0.01	mg/l	N	001-003
TPH (C35-C44 aliphatic)	T81	AR	0.01	mg/l	N	001-003
TPH (Aliphatic) total	T85	AR		mg/l	N	001-003
TPH (C6-C7 aromatic)	T215	AR	0.010	mg/l	N	001-003
TPH (C7-C8 aromatic)	T215	AR	0.010	mg/l	N	001-003
TPH (C8-C10 aromatic)	T215	AR	0.010	mg/l	N	001-003
TPH DW(C10-C12 aromatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C12-C16 aromatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C16-C21 aromatic)	T81	AR	0.01	mg/l	N	001-003
TPH DW(C21-C35 aromatic)	T81	AR	0.01	mg/l	N	001-003
TPH (C35-C44 aromatic)	T81	AR	0.01	mg/l	N	001-003
TPH (Aromatic) total	T85	AR		mg/l	N	001-003
TPH (Aliphatic+Aromatic) (sum)	T85	AR		mg/l	N	001-003
Total Petroleum Hydrocarbons (C5 - C10 aliphatic/aromatic)	T85	AR	0.010	ma/l	N	001-003

APPENDIX J
		LT	Email lab@gipuk.com	COMMENTS				*														-8		14	UKAS	1007	189 / JKAS accredited.	r to samples received.	BS1377 requirements.											
	Devonshire House, Ettingshi	Wolverhampton. WV2 2	Phone 01902 459558, Fax 01902 459085, E	SAMPLE DESCRIPTION				Firm light brown grey slightly sandy slightly gravelly CLAY.			Firm grey slightly sandy gravelly CLAY.			Light brown slightly silty SAND.			MADE GROUND: Dark grey brown clayey sandy GRAVEL.			MADE GROUND: Soft dark grey slightly sandy slightly gravelly CLAY.		Firm brown slightly sandy slightly gravelly CLAY.					ALL CAR				110 222	Tests marked * are not The mondrad results relate or		# = Sample mass smaller than						
				ASSING SIEVE	SIZE	0.425 mm		91		1/2	t											02										5	L							
				88 BS	L.	2.00 E		88						6			æ			ō		# 75										0	1	1						
	ue, ue,				L *ORG	8	۹			\parallel				Ц													ISE Stated.	3:1990:5.5	3:1990:9					nager	5					
	an Assoc uth Aven bridge, Midlands	3XY.		CHEMICAL	CAL	-1-0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۹ س		_					\parallel			\prod					6	\parallel		-		ess otherw	S1377.Par S1377.Pan	51377:Part		ory:-			oratory Mar					
	Spilm 38 So Stourt West	DY8 3			le oH			3 6.7				_	\downarrow	6.8	-		8.7	Ļ		¢.8		7 # 6.					Jun - spou	sa as	le BS		ved signato			mart. Labo						
	mer:				al Solub	S S	3	0.0	+	\prod		_	+	0.0	\downarrow		0.26			71.0		# 0.0		H			Test met	Total S Sol SO	pH Valu		Approv		T							
	Cust				Tot	Jar) SO	×		-	\parallel	+			$\left \right $		_	\parallel		$\left \right $			$\left \right $			╞	H		1990:3.2 1990-4 4	1990:5.3	1990:5.4	1990:8.2	1990:4 1990:3	2.000	boratory	- Townson					
		1 of 1	11.05.17	Г	Id	(Gas	igini	11	+				+		+		\parallel	+	$\left \right $		-		+	$\left \right $		Н		77:Part 2:' 77-Part 2-'	77:Part 2:1	77:Part 2:'	77:Part 3:1	77:Part 3:1	reditation	al hv the la	In the lot					
				operties			<u></u>	21	-		2		+	+	+			╀	╢	+		12	-	\parallel	-	H		% BS13	P BS13	BS13	0 BS13	0.1 BS13 G BS13	UKAS acci	umana na	on able to					
		e No:-	Issued:-	Index Pro			*	1			~		-	+			\parallel	-	H	_		Ť	+	$\left \right $		$\left \right $		ž ×	3	<u>e</u>	PI		scope of	ithout writt	II WHAT THE T					
		Page	Date		3		*	ĕ	+		8	H	+			+	$\ $		\parallel	+		2	+	\parallel		H	riations	ure Contei	c limit	property	le Density	on ignition	utside the	nt in full w	DI 111 1011 11					
	shool.		.04.17	_	~	š č	*	7 28	+		2		_	17		+	E		00.05.47	11	$\left \right $	17 #2	╀	\prod	+	\square	est abbrev	Moist	Plasti	Index	Partic	Loss	inns are o	and ave	anna nagh					
	Riding So	1/9055	27	DATE	NAL			27.04.			27.04.			09.05.			09.05.			09.05		27.04.					E.	N N	WP	≞	D		Internretal	power of	ne reprov					
	Endon I J17032			TAILS	CARADIC	TYPE		٥			•			٥			٩					٥					be		neq	spoon	vater		nions and	a shall not	SIMI IN					
	H		sceived:-	PLE DE	PLE DE	IPLE DE	IPLE DE	PLE DE	IPLE DE	DEDTU		E	0.80			2.50-2.80			1.00			1.00			1.40		1.80					Sample ty	Disturbe	Lindisturt	SPT split	Ground v	Tub	Oni	do ante	India Isal
	Contrac	Job No:	Date Re	SAN	C ANDI D	SAMPLE	No	BH1			BH3			BH4			BH5			BH6		BH6						<u>م</u>	0 =	ი თ	3	⊢		This	5411					

LABORATORY REPORT FOR INDEX PROPERTY AND CHEMICAL TESTING

C;lexceNtrivoln/000,xla