	Aspin Consulting Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF	Project				Job Ref.	
		Field Farm				AC4066	
		Section		Sheet no./rev.			
			Design C		1		
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

Structural calculations

For

Proposed Extension and alterations

Field Farm, Dilhorne

For

Cornerstone Builders

Note: Actual beam lengths to be measured on site DO NOT use span lengths quoted in design calculations. Ensure length includes for bearings as specified on drawings.

Where long span beams are installed to support existing masonry walls the deflection, although within tolerance and cannot be avoided, can be moderate and minor cracking can show in the decoration above. This would tend to occur when props are removed and should be made good

	Project				Job Ref.	
Genesis Centre, Suite F13	Section	Fiel	AC4066			
North Staffs Business Centre	Geolon	Design	Calculations		Sheet no./rev	2
Innovation Way, S16 4BF	Calc. by	Date	Chk'd by	Date	App'd by	Date
	JCI	10/04/17	SC	10/04/17		
CALCULATIONS REVIE	w					
Project Title:			Job No:			
Field Farm			AC4066			
Calculations Prepared by:			Position:			
Jamie Ikin			Civil Engineer			
Signature:			Date:			
			10/04/2017			
Calculations Sheets and Sket	ches Reviewed	:				
Reviewed by:			Job Title:			
STEVE CLARKSON			Associate Dire	ector		
Signature:			Date: 10/04/17			

		Project				Job Ref.	
AC	Aspin Consulting Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF		Field	AC4066			
		Section		Sheet no./rev.			
		Design Calculations					3
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

Reference Section

- 1.0 Design Philosophy Statement
- 2.0 Loading & Assumptions
- 3.0 Design Calculations

\frown		Project				Job Ref.	
	Aspin Consulting Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF		Field	AC4066			
		Section		Sheet no./rev.			
		Design Calculations				4	
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

1.0 DESIGN PHILOSOPHY STATEMENT.

1.0 Aspin Consulting were appointed by Cornerstone Builders to carry out a part structural appraisal of this property. The survey was carried out on 21st February 2017. It was identified that the existing timber joists and supporting timber beams may not have sufficient capacity for domestic load and require checking.

STRUCTURAL SPECIFICATION

Ensure a copy of these calculations and supporting drawings and details are forwarded to Building Control and the Builder in advance of the works commencing.

It is recommended that full approval is obtained from Building Control for the structural proposals prior to ordering materials.

1 General

The contractor shall notify the Engineer should there be any information contained within these calculations and details that are unclear or conflicts with the existing construction.

Traditional construction assumed with solid load bearing inner blockwork/ outer brickwork walls and timber floors

The condition of supporting brickwork and blockwork walls to be verified on site before ordering of materials. Any discrepancies are to be reported to the Engineer.

The structural design and enclosed calculations are based on the drawings and information provided by the Architect.

The structural information provided in the enclosed specification is in addition to that provided by the Architect.

2 Dimensions:

Prior to ordering materials all dimensions to be checked on site.

3 Building Regulation Approval:

It is recommended that full approval is obtained from Building Control for the structural proposals prior to ordering materials.

Where necessary existing foundations to be exposed and inspected by the Building Inspector.

4 Steel Fabrication:

All dimension to be checked / determined on site.

		Project		Job Ref.			
(AC)	Aspin Consulting Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF		Field	AC4066			
U		Section		Sheet no./rev.			
			Design C		5		
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

Where necessary all connections to be designed by the steel fabricator in accordance with BS 5950 to the loadings specified.

Load bearing site welding is to be avoided, bolted connections to be provided where possible. However non load bearing locating welds would be acceptable.

5 **Proprietary Products:**

All propriety manufacturers items [lintels, precast floors, trussed rafters, etc] to be installed in accordance with manufacturer's requirements.

6 Materials:

All materials and installation to comply with current British Standards, Building Regulations and Codes of Practice.

7 CDM 2015 Regulations:

Designer's risks have been considered during the preparation of the structural design and where possible risks have been designed out. Where residual risks remain these are highlighted on the supporting drawings and details.

Temporary works and propping of the existing structure shall consider the existing building loads and ensure stability is maintained at all times.

Installation of steel beams and heavy materials shall use mechanical handling [manual handling regulations].

The contractor is to have a co-ordinated construction plan and method statement for non-traditional works.

The contractor is to inform the designer should there be any changes to the construction that may impact on the design and CDM regulations.

8 Party Wall Act

Where works are being undertaken adjacent to an adjoining property in some cases the PARTY WALL ACT may apply.

In such instances the Architect should be consulted for advice and the correct procedure for notifying the owner of the adjoining property. Approval can take several weeks especially if agreement cannot be reached therefore the notice should be submitted well in advance of the works commencing on site.

If no Architect involved then refer to <u>www.gov.uk/guidance/party-wall-etc-act-1996-guidance</u> for example template notices.

2		Project				Job Ref.	
	Aspin Consulting		Fie	AC4066			
2	North Staffs Business Centre	Section				Sheet no./rev.	
Innovation Way, ST6 4BF		Design Calculations			Data	App'd by	6 Dete
			10/04/17	SC	10/04/17	Appa by	Date
					10/0		
) Bl	UILDING LOA	DS					
-							
ROOF	ELOADING (PITCHED TI	LED ROOF)					
; Roc	of slope; θ = 30.0 °						
<u>Dead</u>	load						
;	Tiles;	Roo	$f_{D1} = 0.65 \text{ kN/m}^2$				
;	Battens & Rafters;	Roo	$f_{D2} = 0.12 \text{ kN/m}^2$				
;	Felt & Ins;	Roo	$f_{D3} = 0.04 \text{ kN/m}^2$				
;	Plaster board & Service	es; Roo	f_{D4} = 0.00 kN/m ²				
Dead	load on slope						
		_ _{sroof} = sum(R	oof _{D1} ,Roof _{D2} ,Roc	of _{D3} ,Roof _{D4}) = 0).81 kN/m²		
;	Ceiling joists;	Roo	f _{D5} = 0.05 kN/m ²				
;	Insulation;	Roo	f _{D6} = 0.03 kN/m ²				
;	Plasterboard and skim;	Roo	$f_{D7} = 0.15 \text{ kN/m}^2$				
;	Services;	Roo	f _{D8} = 0.05 kN/m ²				
Dead	load on plan						
	Roof _{DL}	proof = sum(R	loof _{D5} ,Roof _{D6} ,Roc	of _{D7} ,Roof _{D8}) = 0).28 kN/m²		
Total -	dead load on plan	-	·				
	Roof _{DL} = Roof _{DL sroof} / c	os(θ) + Roof _D	∟ _{proof} = 1.22 kN/m	12			
Impo	sed load		p				
;	Roof imposed load;;	Roof _{IL_proof} =	0.75 kN/m ² ; on (plan			
;	Ceiling imposed load;	Ceiling⊩ = 0.	.25kN/m ² ; on plar	n			
;	Total imposed load on	plan; Roof⊩ =	RoofIL_proof + Cei	iling⊩ = 1.000 kľ	N/m ²		
Unfac	tored foundation design k	oads; wroof	í_u = Roof _{DL} + Ror	of _{IL} = 2.215 kN	/m ²		
Facto	red design loads;	Wroof	= i f = 1.4 × Roof _{DL}	+ 1.6 × Roof _{IL} =	= 3.301 kN/m ²		
-			-'				
TIMB	ER FLOOR LOADING (1 ^s	^{3T} FLOOR)					
<u>Dead</u>	load						
;	Boards;	Floo	r _{1_D1} = 0.18 kN/m	1 ²			
,	Joists;	Floo	r _{1_D2} = 0.20 kN/m	1 ² ;			
;	Ceiling;	Floo	r _{1_D3} = 0.18 kN/m	1 ²			
Total (dead load;Floor1_DL = sur	ו(Floor _{1_D1} ,Flo	or1_d2,Floor1_d3) :	= 0.56 kN/m ²			
<u>Impos</u>	<u>sed load</u>						
;	Imposed load;	Floo	r _{1_l1} = 1.50 kN/m ²	2			
;	Partitions;	Floo	r _{1_l2} = 0.50 kN/m ²	2			
Total i	imposed load; Floor1_	.∟ = sum(Floor	r1_11,Floor1_12) = 2 .	. 00 kN/m²			

 $w_{floor1_u} = Floor_{1_DL} + Floor_{1_IL} = 2.56 \text{ kN/m}^2$

Total 1st floor loads

Unfactored foundation design loads;

		Project		Job Ref.				
4C)	Aspin Consulting		Field Farm				4066	
9	Genesis Centre, Suite F13	Section	ection				Sheet no./rev.	
	Innovation Way, ST6 4BF		Design Calculations				7	
		Calc. by	Date	Chk'd by	Date	App'd by	Date	
		JCI	10/04/17	SC	10/04/17			
Factor	ed design loads;	Wfloor1_f	= 1.4 × Floor _{1_D}	L + 1.6 × Floor ₁	IL = 3.98 kN/m ²			
<u>CAVIT</u>	Y WALL LOADING							
Dead	load							
; Masonry (outer leaf); $CW_{D1} = 2.10 \text{ kN/m}^2$								
;	Masonry (inner leaf);	$CW_{D2} = 1.80 \text{ kN/m}^2$						
;	Plaster;	CW _{D3} =	= 0.18 kN/m ²					
Total o	lead load;CW _{DL} = sum(CV	Vd1,CWd2,CWd3	a) = 4.08 kN/m ²					
Total (cavity wall load							
Unfact	ored foundation design lo	ads; w _{cw_u} =	CW _{DL} = 4.08 kl	N/m ²				
Factor	ed design loads;	w _{cw_f} =	1.4 × CW _{DL} = 5	.71 kN/m²				
INTER	NALWALL LOADING							
Dead	load							
: Masonry: $IW_{D1} =$			1.80 kN/m ²					
•	Plaster (2 sides);	sides): $IW_{D2} = 0.36 \text{ kN/m}^2$						
Total o	lead load;IWpL = sum(IWp	₀1,IW _{D2}) = 2.16 k	:N/m²					
Total	internal wall load	. , -						
Unfact	ored foundation design lo	ads; w _{iw_u} =	IW _{DL} = 2.16 kN	/m²				

Factored design loads;	w_{iw_f} = 1.4 × IW _{DL} = 3.02 kN/m ²

		Project				Job Ref.			
<i>{A</i> C}	Aspin Consulting		Fiel	d Farm		A	C4066		
	Genesis Centre, Suite F13	Section				Sheet no./rev.			
	North Staffs Business Centre		Design (Calculations			9		
	innovation way, 510 4bi	Calc. by	Date	Chk'd by	Date	App'd by	Date		
		JCI	10/04/17	SC	10/04/17				
Loadi	ing details								
			E b y	hyar ya	- 0 04 kN/m				
Dead	load:			$75 \text{ kN}/m^2$	- 0.04 KN/III				
Impor	rodu,			$\mathbf{O} k N m^2$					
Impos	sed ODL(Long term),	.m).	$F_{1}_{udl} = 1.3$ $F_{1}_{ot} = 1.4$						
Madii	fication factors	,,	11_pt 11-44						
Servic	ncation factors	el to grain	Ko 1 00	'n					
Servic	ce class for compression	er to grain	K _{2m} = 1.00	,					
Servic	ce class for shear narallel	to grain	$K_{2c} = 1.00$						
Servic	ce class for modulus of ela	eticity	$K_{2s} = 1.00$						
Sectio	on denth factor:	Sticity	K ₇ = 1.00						
Load	sharing factor:		K ₂ = 1 10						
Loud									
<u>Cons</u>	ider long term loads		K 400						
Load	duration factor;		$K_3 = 1.00$						
;;Max	imum bending moment;		M = 2.379	KNM					
;Maxii	mum snear force;		V = 2.115	KN					
;;Max	imum support reaction;		R = 2.115	KN					
;Maxii	mum deflection;		δ = 17.42 1	l mm					
Chec	k bending stress								
Bendi	ing stress;		σm = 5.300	0 N/mm²					
Permi	issible bending stress;		$\sigma_{m_{adm}} = \sigma$	$m \times K_{2m} \times K_3 \times$	K ₇ × K ₈ = 6.186 N	l/mm²			
Applie	ed bending stress;		$\sigma_{m_{max}} = N$	1 / Z = 6.215 N/	/mm²				
			FAIL - Ap	plied bending	stress exceeds	oermissible l	bending stress		
Chec	k shear stress								
Shear	r stress;		τ = 0.670	N/mm²					
Permi	issible shear stress;		τ_{adm} = τ ×	$K_{2s} \times K_3 \times K_8 =$	0.737 N/mm ²				
Applie	ed shear stress;		τ_{max} = 3 $ imes$	τ_{max} = 3 × V / (2 × b × h) = 0.242 N/mm ²					
				PASS - Ap	oplied shear stres	ss within per	missible limits		
Chec	k bearing stress								
Comp	pression perpendicular to g	jrain (no wane);	σ _{cp1} = 2.20	00 N/mm²					
Permi	issible bearing stress;		$\sigma_{c_{adm}} = \sigma_{c}$	$_{\text{cp1}} \times \text{K}_{\text{2c}} \times \text{K}_{3} \times$	K ₈ = 2.420 N/mm	2			
Applie	ed bearing stress;		σc_max = R	/ (b × L _b) = 0.2	282 N/mm ²				
				PASS - Appl	lied bearing stres	ss within per	missible limits		
Chec	k deflection								
Permi	issible deflection;		δ_{adm} = min	(L _{s1} × 0.003, 14	4 mm) = 13.500 m	ım			
Bendi	ng deflection (based on E	mean);	δ_{bending} = 1	7.025 mm					
Shear	deflection;		$\delta_{shear} = 0.3$	395 mm					
Total	deflection;		$\delta = \delta_{\text{bending}}$	+ δ _{shear} = 17.4	21 mm				
				FAIL - Actua	al deflection exce	eds permiss	ble deflection		
Cons	ider medium term loads								
Load	duration factor:		K3 = 1.25						
::Maxi	imum bendina moment		M = 2.435	kNm					
;Maxir	mum shear force;		V = 2.165	kN					
;;Maxi	imum support reaction:		R = 2.165	kN					
:Maxir	mum deflection:		δ = 15.578	3 mm					
, . <u>.</u>	· · ,								

		Project				Job Ref.			
	Aspin Consulting	- ,	Fiel	d Farm		A	C4066		
	Genesis Centre, Suite F13	Section				Sheet no./rev.			
	North Staffs Business Centre	Design Calculations				10			
	Innovation way, STO 4BF	Calc. by	Date	Chk'd by	Date	App'd by	Date		
		JCI	10/04/17	SC	10/04/17				
Choc	k bonding stross								
Dondi				N/mm ²					
Benui	ng stress,		om = 5.30			1			
Permi	Permissible bending stress;			$\mathbf{v}_{m} \times \mathbf{K}_{2m} \times \mathbf{K}_{3} \times \mathbf{K}_{3}$	$K_7 \times K_8 = 7.733$ N	/mm²			
Applie	Applied bending stress;			1/Z = 6.362 N	l/mm ²				
				PASS - Appl	lied bending stres	ss within per	missible limits		
Checl	k shear stress								
Shear	stress;		$\tau = 0.670$	N/mm ²					
Permi	ssible shear stress;		τ_{adm} = τ \times	$K_{2s} imes K_3 imes K_8$ =	= 0.921 N/mm ²				
Applie	ed shear stress;		τ_{max} = 3 \times	τ_{max} = 3 × V / (2 × b × h) = 0.247 N/mm ²					
				PASS - Applied shear stress within permissible limits					
Checl	k bearing stress								
Comp	ression perpendicular to g	rain (no wane);	σ _{cp1} = 2.20	00 N/mm ²					
Permi	ssible bearing stress;		$\sigma_{c_{adm}} = \sigma_{c}$	$\sigma_{c adm} = \sigma_{cc1} \times K_{2c} \times K_3 \times K_8 = 3.025 \text{ N/mm}^2$					
Applie	ed bearing stress;		σ _{c max} = R	$/(b \times L_b) = 0.2$	289 N/mm ²				
				PASS - App	lied bearing stres	ss within per	missible limits		
Checl	k deflection								
Permi	ssible deflection;		δ_{adm} = min	(L _{s1} × 0.003, 1	l4 mm) = 13.500 m	ım			
Bendi	Bending deflection (based on E _{mean});			5.174 mm					
Shear deflection;			δ _{shear} = 0.4	δ _{shear} = 0.405 mm					
Total	Total deflection;			+ δ _{shear} = 15.5	578 mm				
				FAIL - Actu	al deflection exce	eds permiss	ible deflection		

Existing Timber Joist has Insufficient Capacity - Fails

Consider 175x75 at alternating centres of originals

TIMBER JOIST DESIGN (BS5268)

TIMBER JOIST DESIGN (BS5268-2:2002)

Joist details	
Joist breadth;	b = 75 mm
Joist depth;	h = 175 mm
Joist spacing;	s = 300 mm
Timber strength class;	C16
Service class of timber;	1

TEDDS calculation version 1.1.02

AC	Aspin Consulting	Project	Field	d Farm		Job Ref.	4066			
	Genesis Centre, Suite F13	Section				Sheet no./rev.				
	North Staffs Business Centre		Design C	Calculations			12			
	milovation way, or o 451	Calc. by	Date	Chk'd by	Date	App'd by	Date			
		JCI	10/04/17	SC	10/04/17					
Chec	k bending stress									
Bendi	na stress:		σm = 5.300) N/mm ²						
Permi	ssible bending stress;		$\sigma_{m adm} = \sigma_{m} \times K_{2m} \times K_{3} \times K_{7} \times K_{8} = 6.186 \text{ N/mm}^{2}$							
Applie	ed bending stress;		σ _{m max} = N	1 / Z = 3.934 N/	mm ²					
	0		_ `	PASS - Appli	ed bending stres	s within perm	issible limits			
Checl	k shear stress									
Shear	stress:		τ = 0.670 Ι	N/mm ²						
Permi	ssible shear stress;		$\tau_{adm} = \tau \times I$	$K_{2s} \times K_3 \times K_8 =$	0.737 N/mm ²					
Applie	ed shear stress;		$\tau_{max} = 3 \times 10^{-10}$	V / (2 \times b \times h) =	• 0.153 N/mm ²					
				PASS - Applied shear stress within permissible limits						
Checl	k bearing stress									
Comp	ression perpendicular to g	rain (no wane);	σ _{cp1} = 2.20	00 N/mm ²						
Permi	ssible bearing stress;		$\sigma_{c_{adm}} = \sigma_{c}$	$_{p1} \times K_{2c} \times K_{3} \times$	K ₈ = 2.420 N/mm ²	2				
Applie	ed bearing stress;		σ _{c max} = R	/ (b × L _b) = 0.1	78 N/mm²					
				PASS - Appl	ied bearing stres	s within perm	issible limits			
Checl	k deflection									
Permi	ssible deflection;		$\delta_{adm} = min$	(L _{s1} × 0.003, 14	l mm) = 13.500 m	m				
Bendi	ng deflection (based on Er	mean);	$\delta_{\text{bending}} = 1$	0.776 mm	,					
Shear	deflection;		δ _{shear} = 0.2	2 50 mm						
Total	deflection;		$\delta = \delta_{\text{bending}}$	+ δ _{shear} = 11.02	2 6 mm					
				PASS -	Actual deflectio	n within perm	issible limits			
Consi	ider medium term loads									
Load	duration factor;		K ₃ = 1.25							
;;Maxi	mum bending moment;		M = 1.942	kNm						
;Maxir	num shear force;		∨ = 1.726	V = 1.726 kN						
;;Maxi	mum support reaction;		R = 1.726	R = 1.726 kN						
;Maxir	num deflection;		δ = 11.964	mm						
Checl	k bending stress									
Bendi	ng stress;		σm = 5.300) N/mm ²						
Permi	ssible bending stress;		$\sigma_{m_{adm}} = \sigma$	$m \times K_{2m} \times K_3 \times K_3$	K ₇ × K ₈ = 7.733 N	/mm ²				
Applie	ed bending stress;		$\sigma_{m_{max}} = N$	1 / Z = 5.072 N/	mm ²					
				PASS - Appli	ed bending stres	s within perm	issible limits			
Checl	k shear stress									
Shear	stress;		τ = 0.670 Ι	N/mm ²						
Permi	ssible shear stress;		$\tau_{adm} = \tau \times I$	$K_{2s} \times K_3 \times K_8 =$	0.921 N/mm ²					
Applied shear stress;			$\tau_{max} = 3 \times 10^{-1}$	V / (2 × b × h) =	• 0.197 N/mm ²					
				PASS - Ap	plied shear stres	s within perm	issible limits			
Checl	k bearing stress									
Comp	ression perpendicular to g	rain (no wane);	σ _{cp1} = 2.20	10 N/mm ²						
Permi	ssible bearing stress;		$\sigma_{c_{adm}} = \sigma_{c}$	$_{cp1} \times K_{2c} \times K_3 \times$	K ₈ = 3.025 N/mm ²	2				
Applie	ed bearing stress;		$\sigma_{c_{max}} = R$	/ (b × L _b) = 0.2	30 N/mm ²					
				PASS - Appl	led bearing stres	s within perm	issible limits			
Checl	k deflection									
Permi	ssible deflection;		δ_{adm} = min	(L _{s1} × 0.003, 14	4 mm) = 13.500 m	m				

		Project	Job Ref.				
AC	Aspin Consulting		Field	AC4066			
	Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF	Section		Sheet no./rev.			
			Design C	alculations			13
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

Bending deflection (based on $\mathsf{E}_{\mathsf{mean}});$ Shear deflection;

δ_{bending} = **11.641** mm

Total deflection;

δ_{shear} **= 0.323** mm

 $\delta = \delta_{bending} + \delta_{shear} = 11.964 \text{ mm}$

PASS - Actual deflection within permissible limits

Provide additional 175x75 C16 Timber Joist between every other space of existing joists, providing 800mm centres between new.

Project Job Ref.										
(AC)	Aspin Consulting		Field	l Farm		AC	4066			
	Genesis Centre, Suite F13	Section				Sheet no./rev.				
\smile	North Staffs Business Centre		Design C	Design Calculations			15			
	Innovation Way, S16 4BF	Calc. by	Date	Chk'd by	Date	App'd by	Date			
		JCI	10/04/17	SC	10/04/17					
				I						
Servic	e class for compression		K _{2c} = 1.00							
Servic	e class for shear parallel t	to grain	$K_{2s} = 1.00$							
Servic	e class for modulus of ela	sticity	K _{2e} = 1.00							
Sectio	n depth factor;		K7 = 1.10							
Load s	sharing factor;		K ₈ = 1.10							
Consi	der long term loads									
Load o	duration factor;		K ₃ = 1.00							
;;Maxii	mum bending moment;		M = 0.600	kNm						
;Maxin	num shear force;		V = 0.961 k	٨N						
;;Maxii	mum support reaction;		R = 0.961	kN						
;Maxin	num deflection;		δ = 3.778 r	nm						
Check	c bending stress									
Bendir	na stress:		σm = 5.300	N/mm ²						
Permi	ssible bending stress:			n x K2m x K3 x K	7 × K₂ = 6 419 N/	mm ²				
Annlie	d hending stress:		$\sigma_{m} = M$	$om_a a m - om \times r_2 m \times r_3 \times r_7 \times r_8 = 0.413 N/IIIIII^2$						
Applied bending sitess, Om_max = W/2 = 3.014 formin					issihla limits					
<u>.</u>					a benang sires.					
Check	shear stress									
Shear	stress;		τ = 0.670 Ν	N/mm²						
Permis	ssible shear stress;		τ _{adm} = τ × Ρ	$K_{2s} \times K_3 \times K_8 = 0$.737 N/mm ²					
Applie	d shear stress;		$\tau_{max} = 3 \times N$	$//(2 \times b \times h) = 0$	0.154 N/mm ²					
				PASS - App	lied shear stres	s within perm	issible limits			
Check	c bearing stress									
Comp	ression perpendicular to g	rain (no wane);	σ _{cp1} = 2.20	0 N/mm²						
Permis	ssible bearing stress;		σ_{c_adm} = $\sigma_{cp1} \times K_{2c} \times K_3 \times K_8$ = 2.420 N/mm ²							
Applie	d bearing stress;		$\sigma_{c_{max}} = R$	/ (b × L _b) = 0.128	8 N/mm ²					
				PASS - Applie	d bearing stress	s within perm	issible limits			
Check	deflection									
Permis	ssible deflection:		$\delta_{adm} = min($	L _{s1} × 0.003, 14	mm) = 7.500 mm					
Bendir	ng deflection (based on E	mean).	$\delta_{\text{bending}} = 3$	639 mm	,,					
Shear	deflection:	nearly,	$s_{1} = 0.140 \text{ mm}$							
Total c	deflection:		$\delta = \delta_{\text{handling}}$	+ δ _{aboar} = 3 778	mm					
i otar e			0 Oberiding	PASS -	Actual deflection	n within nerm	issihle limits			
				1400 /						
<u>Consi</u>	der medium term loads									
Load o	duration factor;		K ₃ = 1.25							
;;Maxii	mum bending moment;		M = 1.007	kNm						
;Maxin	num shear force;	V = 1.611 kN								
;;Maxii	mum support reaction;		R = 1.611	KN						
;Maxin	num deflection;		δ = 5.275 r	nm						
Check	c bending stress									
Bendir	ng stress;		σm = 5.300	N/mm ²						
Permis	ssible bending stress;		$\sigma_{m_{adm}} = \sigma_{r}$	$_{n} \times K_{2m} \times K_{3} \times K_{3}$	₇ × K ₈ = 8.024 N/	mm²				
Applie	d bending stress;		$\sigma_{m_{max}}$ = M	/ Z = 5.154 N/m	1m ²					
	PASS - Applied bending stress within permissible lin						issible limits			

		Project				Job Ref				
AC	Aspin Consulting		Fiel	d Farm		AC4066				
	Genesis Centre, Suite F13	Section				Sheet no./rev.				
\smile	North Staffs Business Centre		Design (16						
	milovation way, 510 4DI	Calc. by	Date	Chk'd by	Date	App'd by	Date			
		JCI	10/04/17	SC	10/04/17					
Check	shoar stross									
Shear	stress.		τ = 0.670	N/mm ²						
Permis	ssible shear stress:		τ _{adm} = τ ×	K2s × K3 × K8 =	0.921 N/mm ²					
Applied shear stress:			$\tau_{max} = 3 \times$	$\tau_{max} = 3 \times V / (2 \times b \times h) = 0.258 \text{ N/mm}^2$						
				PASS - Ap	plied shear stres	s within perm	issible limits			
Check	c bearing stress									
Compi	ression perpendicular to g	rain (no wane);	σ _{cp1} = 2.20	σ _{cp1} = 2.200 N/mm ²						
Permis	ssible bearing stress;		$\sigma_{c_{adm}} = \sigma_{c}$	σ_{c_adm} = $\sigma_{cp1} \times K_{2c} \times K_3 \times K_8$ = 3.025 N/mm ²						
Applie	d bearing stress;		σc_max = R	/ (b × L _b) = 0.2	15 N/mm ²					
				PASS - Appl	lied bearing stres	s within perm	issible limits			
Check	deflection									
Permis	ssible deflection;		δ_{adm} = min	(Ls1 × 0.003, 14	4 mm) = 7.500 mm	ı				
Bending deflection (based on E_{mean}); $\delta_{bending} = 5.040$					_{lding} = 5.040 mm					
Shear	deflection;		$\delta_{shear} = 0.2$	2 34 mm						
Total of	deflection;		$\delta = \delta_{\text{bending}}$	+ δ _{shear} = 5.27	5 mm					
				PASS	- Actual deflectio	n within perm	issible limits			

Existing Timber Joist has Capacity – Pass

	Proje	ct				Job Ref.		
Aspin Consu	ulting	Field Farm					AC4066	
Genesis Centr	re, Suite F13 Section	on		Sheet no./rev.				
North Staffs Bu	siness Centre		Design C	alculations		17		
	Calc.	by	Date	Chk'd by	Date	App'd by	Date	
		JCI	10/04/17	SC	10/04/17			
3.3 Consider Exis	ting Timber b	eam – 2	<u>25x200mm</u>					
Width of pitch roof load car	rried ;	R _w = 4.	0m ;;					
Unfactored Dead load udl ;	;	wroof _{dea}	d= R _w × Roof _{DL} =	4.861 kN/m				
Unfactored Imposed load udl ; $wroof_{imposed} = R_w \times Roof_{iL} = 4.000 kN/m$								
Wall UDL; height=2.4 m; u	udl=4.08kN/m²;							
Wall _{unfact} = udl×height=9.79	/2 kN/m;							
Total unfastared impassed I		Imn	- uroof - A					
	UDL,	IIIPudlunfa	act- WIOOIimposed -4					
Total unfactored dead UDL	-;	Dead _{udlu}	_{unfact} = wroof _{dead} + V	Vall _{unfact} = 14.653	kN/m			
Width of first floor load carr	ried ;	F _w = 2.	5m ;					
Unfactored Floor dead ;	Unfactored Floor dead ; wufloor1 _{dead} = $3.7m \times F_w \times Floor_{1_DL} = 5.180$ kN							
Unfactored Floor imposed;		wufloor1 _{imposed} = $3.7m \times F_w \times Floor_{1_{LL}} = 18.500$ kN						
End Reaction acting on be	am;							
Unfactored Dead;		R _{ad} = wi	ufloor1 _{dead} /2 = 2.5	590 kN				
Unfactored Imposed; R _{ai} = wufloor1 _{imposed} /2 = 9.250 kN								

TIMBER BEAM ANALYSIS & DESIGN (BS5268)

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.5.07

	Project	Job Ref.							
Aspin Consulting		Field	l Farm		AC4	4066			
Genesis Centre, Suite F13	Section				Sheet no./rev.				
North Staffs Business Centre		Design C	alculations			19			
innovation way, 310 4bi	Calc. by	Date	Chk'd by	Date	App'd by	Date			
	JCI	10/04/17	SC	10/04/17					
Overall broadth of member:		b. – N b.	- 200 mm						
Timber strength class:			- 200 mm						
		024							
Member details		4							
Service class of timber;		1 Long torm	1						
Length of begring:			m						
Section properties				,					
Cross sectional area of membe	r;	$A = N \times b >$	n = 45000 mm ²	- 2					
Section modulus;		$Z_x = N \times b$	× h² / 6 = 16875	00 mm ³					
		$Z_y = h \times (N)$	$(\times b)^2 / 6 = 1500$	000 mm ³					
Second moment of area;		$I_x = N \times b \times$	h ³ / 12 = 18984	3750 mm⁴					
		$I_y = h \times (N)$	\times b) ³ / 12 = 1500	00000 mm⁴					
Radius of gyration;		$i_x = \sqrt{(I_x / A)}$) = 65.0 mm						
		i _y = √(I _y / A) = 57.7 mm							
Modification factors									
Duration of loading - Table 17;		K ₃ = 1.00							
Bearing stress - Table 18;		K ₄ = 1.00							
l otal depth of member - cl.2.10	.6;	$K_7 = (300 \text{ r})$	nm / h) ^{0.11} = 1.0 3	3					
Load sharing - ci.2.9;		$K_8 = 1.00$							
Lateral support - cl.2.10.8									
No lateral support	tia Table 10	2.00							
Actual depth to broadth ratio	illo - Table 19;	2.00							
		117 (IN × D)	- 1.13	PASS-1	atoral sunnor	t is adoquato			
	· · · · ·			7 400 - 20	iterai suppor	i is adequate			
Compression perpendicular t		_		- 2 400 N/mama ²					
Applied begring stress (no	wane),	$\sigma_{c_adm} = \sigma_{cp1} \times \kappa_3 \times \kappa_4 \times \kappa_8 = 2.400 \text{ N/IIIII}^2$							
Applied bearing stress,		$\sigma_{c_a} = 1023$							
	=All - Applied c	Oc_a / Oc_adr	n - 1.025 ress exceeds n	ormissible com	nrossivo stroj	ss at hoaring			
, Develine recentlet to evolution		ompressive st	ess exceeds p		01633176 3116	ss at bearing			
Bending parallel to grain				- 7 744 N/mam ²					
Applied banding stress,		$\sigma_{m_{adm}} = \sigma_{r}$	$\sigma_{m_{adm}} = \sigma_{m} \times K_{3} \times K_{7} \times K_{8} = 7.741 \text{ N/mm}^{2}$						
Applied bending stress,		om_a - 1017.	∠x - 30.711 N/III	111-					
		6m_a / 6m_a ΕΔΙΙ - Δη	$\sigma_{m_a} / \sigma_{m_adm} = 4.742$						
			incu benanig st			nung si coo			
Snear parallel to grain			(1/22/22					
Permissible shear stress;		$\tau_{adm} = \tau \times r$	$(3 \times K_8 = 0.710 \text{ f})$						
Applied snear stress; $\tau_a = 3 \times F / (2 \times A) = 1.637$				N/mm ²					
		τa / τadm = 4	Applied shear	strass avecade	normissible	choor stross			
		I AIL	- Applied Sileal	SILESS EXCEEDS	permissible	311601 311633			
Deflection Modulus of closticity for doffect	on:	F-F -'	7200 NI/mm ²						
Derminable deflection:	011,	$E = E_{min} =$	14 mm = 0.002 y	= 12 = 500 mm	n				
Rending deflection:			. ı+ mm, 0.003 × I 71 mm	Ls1) - 13.300 m	11				
Shear deflection		$o_{b_s1} = 91.4/1 \text{ mm}$							
		UV_51 - U.U							

		Project		Job Ref.							
<i>AC</i>	Aspin Consulting		Field	d Farm		A	AC4066				
	Genesis Centre, Suite F13	Section				Sheet no./rev	·.				
\smile	North Staffs Business Centre		Design C	alculations			21				
	Innovation Way, S16 4BF	Calc. by	Date	Chk'd by	Date	App'd by	Date				
		JCI	10/04/17	SC	10/04/17						
Suppo	ort conditions										
Suppo	ort A		Vertically r	Vertically restrained							
			Rotationall	Rotationally free							
Suppo	Support B			estrained							
			Rotationall	Rotationally free							
Applie	ed loading										
Beam	loads		Dead self v	weight of beam	I × 1						
			Dead full L	JDL 2 kN/m							
			Imposed fu	ıll UDL 7.35 kN	l/m						
			Dead point	t load 1.3 kN at	2250 mm						
			Imposed p	Imposed point load 4.65 kN at 2250 mm							
Load	combinations										
Load o	combination 1		Support A		Dead ×	1.40					
					Impose	d × 1.60					
			Span 1		Dead ×	1 40					
			opun		Impose	d v 1 60					
			Support B	Support B Dead ~ 1			1 40				
			Support B			1. 4 0					
					impose	u × 1.00					
Analy	sis results										
Maxim	ium moment;		$M_{max} = 48.$	1 kNm;	M _{min} = 0) kNm					
Maxim	ium shear;		V _{max} = 38. 1	l kN;	$V_{min} = -$	38.1 kN					
Deflec	tion;		δ _{max} = 11.9) mm;	δ _{min} = 0	mm					
Maxim	ium reaction at support A;		R _{A_max} = 38	3.1 kN;	R _{A_min} =	38.1 kN					
Unfact	tored dead load reaction a	at support A;	$R_{A_{Dead}} = 5$	5.7 kN							
Unfact	tored imposed load reaction	on at support A;	RA_Imposed =	= 18.9 kN	_						
Maxim	ium reaction at support B;		$R_{B_{max}} = 38$	3.1 kN;	R _{B_min} =	38.1 kN					
Unfact	tored dead load reaction a	at support B;	$R_{B_{Dead}} = 5$	5.7 kN							
Unfact	tored imposed load reaction	on at support B;	RB_Imposed =	= 18.9 kN							
Sectio	on details										
Sectio	n type;		PFC 200x	75x23 (BS4-1)							
Steel g	grade;		S355								
From	table 9: Design strength	ı p _y									
Thickn	less of element;		max(T, t) =	12.5 mm							
Desigr	n strength;		py = 355 N	/mm²							
Modul	us of elasticity;		E = 20500	0 N/mm ²							

		Project				Job Ref.			
AC)	Aspin Consulting		Field	d Farm		AC	4066		
	Genesis Centre, Suite F13	Section				Sheet no./rev.			
	North Staffs Business Centre		Design C	alculations			22		
	innovation way, or o 451	Calc. by D	ate	Chk'd by	Date	App'd by	Date		
		JCI	10/04/17	SC	10/04/17				
			2						
		-	. <u>↓</u>						
		Ĩ	\mathbf{T}						
		500	-▶6 ∢						
		Ĩ							
			-12.5						
		↓ ↓							
			Т	75					
			•	- / J					
Latera	I restraint								
			Span 1 has	s full lateral restr	aint				
Effect	ive length factors								
Effecti	ve length factor in major a	xis;	K _x = 1.00						
Effecti	ve length factor in minor a	ixis;	K _y = 1.00						
Effecti	ve length factor for lateral	-torsional buckling	; K _{LT.A} = 0.8	5;					
			K _{LT.B} = 0.8	5;					
Classi	fication of cross sectior	ns - Section 3.5							
			ε = √[275 №	N/mm ² / p _y] = 0.8	8				
Intern	al compression parts - T	able 11							
Depth	of section;		d = 151 mr	m					
			d / t = 28.6	× ε <= 80 × ε;	Class 1	plastic			
Outsta	and flanges - Table 11								
Width	of section;		b = B = 75	mm					
			b / T = 6.8	× ε <= 9 × ε;	Class 1	plastic			
						Section is c	ass 1 plastic		
Shear	capacity - Section 4.2.3								
Desigr	n shear force;		F _v = max(a	$F_v = max(abs(V_{max}), abs(V_{min})) = 38.1 \text{ kN}$					
			d / t < 70 ×	3			_		
<u> </u>			· · -	Web does n	not need to be c	hecked for sh	ear buckling		
Shear	area;		$A_v = t \times D =$	= 1200 mm ²					
Desigr	n snear resistance;		$P_v = 0.6 \times$	p _y × A _v = 255.6 k		roode destain			
		_	PAS	os - vesign sne	ar resistance e)	ceeus desigi	i snear torce		
Mome	nt capacity - Section 4.2	5	NA			l N Ima			
Design	i penaing moment;	1 2 5 2.	ivi = max(a	DS(IVIs1_max), abs	(IVIs1_min)) = 48.1	KINM n			
iviome	m capacity low snear - Cl.4	+.2.3.2,	ivic = min(p)	$y \times \Im_{xx}, 1.2 \times p_y $	× ∠ _{xx)} = ōu.b KNn	n e design bor	lina momont		
.			P/	133 - WUIIIEII(C	αραιιγ εχτεέα	s uesiyii bell	any moment		
Check	vertical deflection - Sec	ction 2.5.2							
Consid	a deflection due to impo	sed loads	S	14 mm 1 . (200)) - 19 5				
Limitin	y dellection;		olim = min(*	14 MM, Ls1 / 360)) = 1 2.5 mm				

		Project				Job Ref.	
(AC)	Aspin Consulting		Field	AC4066			
	Genesis Centre, Suite F13 North Staffs Business Centre Innovation Way, ST6 4BF	Section		Sheet no./rev.			
		Design Calculations			23		
		Calc. by	Date	Chk'd by	Date	App'd by	Date
		JCI	10/04/17	SC	10/04/17		

Maximum deflection span 1;

 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 11.947 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Provide 2no 200x75 23mm PFC either side of existing 225x200mm timber beam.

Fix 360x 200x 8mm plates at 500mm C/C to the bottom flanges of PFC with timber packers to underside of timber beam.

Locate PFC with suitable coach screws.

Beam loads

Dead self weight of beam × 1 Dead full UDL 1.5 kN/m Imposed full UDL 1.2 kN/m

\frown		Project				Job Ref.			
(AC)	Aspin Consulting		Field	l Farm	A	C4066			
	Genesis Centre, Suite F13	Section				Sheet no./rev.			
	North Staffs Business Centre		Design Calculations			25			
	Innovation Way, ST6 4BF	Calc. by Date Chk'd by Dr			Date	App'd by	Date		
		JCI	10/04/17	SC	10/04/17				
Load	combinations								
Load o	combination 1		Support A		Dead ×	1.40			
				Impose			d × 1.60		
				Span 1 Dead ×			1.40		
			-	Impose					
			Support B		Dead ×	1.40			
					Impose	d × 1.60			
					impeee				
Analy	sis results			1. N I		N . N			
Maxim	ium moment;		$M_{max} = 7.3$	KNM;	$M_{min} = 0$				
Maxim	ium snear;		V _{max} = 7.8	KN;	$V_{min} = -$	7.8 KN			
Deflec	tion;		δ _{max} = 4.1 r	nm;	δ _{min} = 0	mm			
Maxim	um reaction at support A;		$R_{A_{max}} = 7.$	8 KN;	R _{A_min} =	7.8 kN			
Unfact	ored dead load reaction a	t support A;	$R_{A_Dead} = 3$.1 KN					
Unfact	ored imposed load reaction	on at support A;	RA_Imposed =	2.2 KN	-				
Maxim	ium reaction at support B;		$R_{B_{max}} = 7.$	8 KN;	R _{B_min} =	7.8 KN			
Unfact	ored dead load reaction a	t support B;	$R_{B_{Dead}} = 3$.1 KN					
Unfact	ored imposed load reaction	on at support B;	RB_Imposed =	2.2 KN					
Sectio	on details								
Sectio	n type;		UB 152x89	9x16 (BS4-1)					
Steel g	grade;		S355						
From	table 9: Design strength	р _у							
Thickr	less of element;		max(T, t) =	7.7 mm					
Desigr	n strength;		p _y = 355 N	/mm ²					
Modul	us of elasticity;		E = 205000) N/mm ²					
		152.4	-	▲ 4.5					
		1							
		L L	L						
			◀────	88.7▶					
• ·									
Latera	il restraint		o						
			Span 1 has	s tull lateral resti	raint				
Effect	ive length factors								
Effecti	ve length factor in major a	ixis;	K _x = 1.00						
Effecti	ve length factor in minor a	ixis;	Ky = 1.00						
Effecti	ve length factor for lateral	-torsional bucklin	g; K _{LT.A} = 1.0) ;					
			K _{LT.B} = 1.00) ;					

		Project	Project Job Ref.						
FAC)	Aspin Consulting		Field	l Farm		A	24066		
\mathbf{U}	Genesis Centre, Suite F13	Section		Sheet no./rev.					
	Innovation Way, ST6 4BE		Design C	alculations		26			
	innovation way, 510 4DI	Calc. by	Date	Chk'd by	Date	App'd by	Date		
		JCI	10/04/17	SC	10/04/17				
Classif	ination of aroon postion	na Castian 2	E						
Classif	ication of cross section	ns - Section s	.5	$1/mm^2/n$	00				
			$\varepsilon = \sqrt{275}$ r	$\mathbf{v}_{\text{mm}} = \mathbf{v}_{\text{s}}$.00				
Interna	I compression parts - 1	Table 11							
Depth o	f section;		d = 121.8 r	nm					
			d / t = 30.8	$\times \epsilon \le 80 \times \epsilon;$	Class 1	l plastic			
Outsta	nd flanges - Table 11								
Width o	f section;		b = B / 2 =	44.4 mm					
			b / T = 6.5	×ε <= 9 ×ε;	Class 1	l plastic			
						Section is	class 1 plastic		
Shear o	apacity - Section 4.2.3								
Design	shear force;		F _v = max(a	bs(V _{max}), abs(\	√ _{min})) = 7.8 kN				
0			d / t < 70 ×	ε	,,				
				Web does	not need to be a	checked for s	shear buckling		
Shear a	irea;		A _v = t × D =	= 686 mm²			Ū		
Design	shear resistance;		$P_v = 0.6 \times 10^{-10}$	p _v × A _v = 146.1	kN				
Ū			PAS	PASS - Design shear resistance exceeds design shear force					
Momen	t capacity - Section 4 2	2.5					-		
Design	bending moment:		M = max(a	bs(Ms1 max) ab	$S(M_{s1}, m_{in})) = 7.3$	٨m			
Momen	t capacity low shear - cl	4252	$M_c = min(n)$	$M_{a} = \min(n_{y} \times S_{w} + 1.2 \times n_{y} \times 7_{w}) = 43.8 \text{ kNm}$					
$\frac{1}{10000000000000000000000000000000000$			P4	PASS - Moment capacity exceeds design bending moment					
Chaola	vertical deflection Co.	ation 0 5 0					g		
Conside	vertical denection - Sec		loodo						
Limiting		i and imposed		260 - 40 279 ~					
Limiting	uenection,		Olim = Ls1 / s	10.2/8)) = 4.076 mare				
iviaximu	in deliection span 1;		$o = \max(ac)$	os(o _{max}), abs(o _m	nin)) = 4.070 mm	nat aveas d	deflection limit		
			PAS	S - Maximum	aeriection does	not exceed a	seriection limit		