


Appendix A7

CCTV Report (to follow)

Appendix A8

Foul/Surface Water Strategy

Appendix A9

Surface Water Calculations

Patrick Parsons		Page 1
9 Frederick Road	Buxton road, Leek	
Edgbaston	Storage Calc	
Birmingham	lin100 + 40 (20 l/s)	Micro
Date 02.02.17	Designed by Dave Williams	Drainage
File STORAGE 1IN100 + 40 20L	Checked by	Dialilade
XP Solutions	Source Control 2016.1	

Summary of Results for 100 year Return Period (+40%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	98.666	0.666	20.0	53.3	O K
30	min	Summer	98.810	0.810	20.0	64.8	O K
60	min	Summer	98.869	0.869	20.0	69.5	O K
120	min	Summer	98.831	0.831	20.0	66.5	O K
180	min	Summer	98.744	0.744	20.0	59.6	O K
240	min	Summer	98.632	0.632	20.0	50.6	O K
360	min	Summer	98.445	0.445	20.0	35.6	O K
480	min	Summer	98.319	0.319	20.0	25.6	O K
600	min	Summer	98.243	0.243	19.6	19.4	O K
720	min	Summer	98.203	0.203	19.0	16.3	O K
960	min	Summer	98.171	0.171	15.8	13.7	O K
1440	min	Summer	98.139	0.139	11.8	11.1	O K
2160	min	Summer	98.114	0.114	8.6	9.2	O K
2880	min	Summer	98.100	0.100	6.9	8.0	O K
4320	min	Summer	98.084	0.084	5.1	6.7	O K
5760	min	Summer	98.074	0.074	4.0	5.9	O K
7200	min	Summer	98.067	0.067	3.4	5.4	O K
8640	min	Summer	98.062	0.062	2.9	5.0	O K
10080	min	Summer	98.058	0.058	2.6	4.7	O K
15	min	Winter	98.763	0.763	20.0	61.0	O K
30	min	Winter	98.926	0.926	20.0	74.1	O K

Storm			Rain	Flooded	Discharge	Time-Peak		
	Event		(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
15	min	Summer	117.566	0.0	66.0	16		
30	min	Summer	79.051	0.0	88.8	29		
60	min	Summer	50.812	0.0	114.3	46		
120	min	Summer	31.606	0.0	142.2	80		
180	min	Summer	23.620	0.0	159.4	116		
240	min	Summer	19.088	0.0	171.8	146		
360	min	Summer	14.022	0.0	189.3	206		
480	min	Summer	11.272	0.0	202.9	262		
600	min	Summer	9.508	0.0	213.9	316		
720	min	Summer	8.270	0.0	223.2	370		
960	min	Summer	6.629	0.0	238.6	490		
1440	min	Summer	4.845	0.0	261.6	734		
2160	min	Summer	3.534	0.0	286.2	1100		
2880	min	Summer	2.821	0.0	304.7	1468		
4320	min	Summer	2.050	0.0	332.1	2192		
5760	min	Summer	1.633	0.0	352.6	2936		
7200	min	Summer	1.367	0.0	369.2	3640		
8640	min	Summer	1.182	0.0	383.1	4344		
10080	min	Summer	1.046	0.0	395.4	5136		
15	min	Winter	117.566	0.0	74.0	17		
30	min	Winter	79.051	0.0	99.5	30		

©1982-2016 XP Solutions

Patrick Parsons					
9 Frederick Road	Buxton road, Leek				
Edgbaston	Storage Calc				
Birmingham	lin100 + 40 (20 l/s)	Micro			
Date 02.02.17	Designed by Dave Williams	Drainage			
File STORAGE 1IN100 + 40 20L	Checked by	namaye			
XP Solutions	Source Control 2016.1	•			

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	98.986	0.986	20.0	78.9	O K
120	min	Winter	98.912	0.912	20.0	72.9	O K
180	min	Winter	98.773	0.773	20.0	61.8	O K
240	min	Winter	98.593	0.593	20.0	47.4	O K
360	min	Winter	98.328	0.328	20.0	26.3	O K
480	min	Winter	98.208	0.208	19.2	16.6	O K
600	min	Winter	98.178	0.178	16.5	14.3	O K
720	min	Winter	98.160	0.160	14.5	12.8	O K
960	min	Winter	98.138	0.138	11.7	11.0	O K
1440	min	Winter	98.114	0.114	8.6	9.1	O K
2160	min	Winter	98.095	0.095	6.2	7.6	O K
2880	min	Winter	98.084	0.084	5.0	6.7	O K
4320	min	Winter	98.070	0.070	3.6	5.6	O K
5760	min	Winter	98.062	0.062	2.9	5.0	O K
7200	min	Winter	98.057	0.057	2.4	4.5	O K
8640	min	Winter	98.053	0.053	2.1	4.2	O K
10080	min	Winter	98.049	0.049	1.9	3.9	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	128.0	48
120	min	Winter	31.606	0.0	159.3	86
180	min	Winter	23.620	0.0	178.5	124
240	min	Winter	19.088	0.0	192.4	156
360	min	Winter	14.022	0.0	212.0	210
480	min	Winter	11.272	0.0	227.2	256
600	min	Winter	9.508	0.0	239.6	312
720	min	Winter	8.270	0.0	250.0	370
960	min	Winter	6.629	0.0	267.2	490
1440	min	Winter	4.845	0.0	293.0	736
2160	min	Winter	3.534	0.0	320.5	1100
2880	min	Winter	2.821	0.0	341.2	1448
4320	min	Winter	2.050	0.0	371.9	2160
5760	min	Winter	1.633	0.0	395.0	2880
7200	min	Winter	1.367	0.0	413.5	3600
8640	min	Winter	1.182	0.0	429.0	4352
10080	min	Winter	1.046	0.0	442.8	5128

Patrick Parsons		Page 3
9 Frederick Road	Buxton road, Leek	
Edgbaston	Storage Calc	
Birmingham	lin100 + 40 (20 l/s)	Micro
Date 02.02.17	Designed by Dave Williams	Drainage
File STORAGE 1IN100 + 40 20L	Checked by	namaye
XP Solutions	Source Control 2016.1	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 18.000 Shortest Storm (mins) 15
Ratio R 0.351 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.300

Time (mins) Area From: To: (ha)

Patrick Parsons				
9 Frederick Road	Buxton road, Leek			
Edgbaston	Storage Calc			
Birmingham	lin100 + 40 (20 l/s)	Micco		
Date 02.02.17	Designed by Dave Williams	Drainage		
File STORAGE 1IN100 + 40 20L	Checked by	Dialilade		
XP Solutions	Source Control 2016.1	1		

Model Details

Storage is Online Cover Level (m) 100.000

Tank or Pond Structure

Invert Level (m) 98.000

Depth (m) Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)	Depth	(m)	Area	(m²)
0.0	00	80.0	1.	400		0.0	2.	.800		0.0	4.	200		0.0
0.2	00	80.0	1.	600		0.0	3.	.000		0.0	4.	400		0.0
0.4	00	80.0	1.	800		0.0	3.	.200		0.0	4.	600		0.0
0.6	00	80.0	2.	000		0.0	3.	400		0.0	4.	800		0.0
0.8	00	80.0	2.3	200		0.0	3.	.600		0.0	5.	000		0.0
1.0	00	80.0	2.	400		0.0	3.	.800		0.0				
1.0	01	0.0	2.	600		0.0	4.	.000		0.0				

Hydro-Brake Optimum® Outflow Control

Unit Reference MD-SHE-0199-2000-1000-2000 Design Head (m) 1.000 Design Flow (1/s) 20.0 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 199 Invert Level (m) 98.000 Minimum Outlet Pipe Diameter (mm) 225 1500 Suggested Manhole Diameter (mm)

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake Optimum® as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flow (1/s)	Depth (m) Flow (1/	s) Depth (m) Flow	(1/s) Depth	n (m) Flow (1/s)
0.100 6.9	1.200 21	.8 3.000	33.8	7.000 51.0
0.200 18.	1.400 23	.5 3.500	36.4	7.500 52.7
0.300 19.9	1.600 25	.0 4.000	38.9	3.000 54.4
0.400 19.9	1.800 26	.5 4.500	41.1	3.500 56.0
0.500 19.5	2.000 27	.8 5.000	43.3	9.000 57.6
0.600 19.0	2.200 29	.1 5.500	45.3	9.500 59.1
0.800 18.0	2.400 30	.4 6.000	47.3	
1.000 20.0	2.600 31	.6 6.500	49.2	

©1982-2016 XP Solutions

<u>London – Twickenham</u>

<u>London – Central</u>

Birmingham

<u>Chester</u>

Manchester

<u>Huddersfield</u>

Newcastle upon Tyne

<u>Glasgow</u>

 $\underline{\text{Guildford}}$

<u>Dubai</u>

<u>Sydney</u>