

JOHN POINTON & SONS

New Inn, Leek Road, Longsdon

Removal of Petrol Tank and Hydrocarbon Contaminated Soils

August 2015

Wardell Armstrong

Sir Henry Doulton House, Forge Lane, Etruria, Stoke-on-Trent, ST1 5BD, United Kingdom Telephone: +44 (0)845 111 7777 Facsimile: +44 (0)845 111 8888 www.wardell-armstrong.com

DATE ISSUED:

August 2015

JOB NUMBER:

ST11160

REPORT NUMBER:

002

JOHN POINTON & SONS

New Inn, Leek Road, Longsdon

Removal of Petrol Tank and Hydrocarbon Contaminated Soils

August 2015

PREPARED BY:

I Kilcran

Environmental Scientist

C Smith

Associate Director

APPROVED BY:

M G Staff

Director

This report has been prepared by Wardell Armstrong LLP with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and Wardell Armstrong LLP accept no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this document may be reproduced without the prior written approval of Wardell Armstrong LLP.

ENERGY AND CLIMATE CHANGE
ENVIRONMENT AND SUSTAINABILITY
INFRASTRUCTURE AND UTILITIES
LAND AND PROPERTY
MINING AND MINERAL PROCESSING
MINERAL ESTATES
WASTE RESOURCE MANAGEMENT

CONTENTS

1	INTRODUCTION	1
2	BACKGROUND	1
	TANK REMOVAL	
	EXCAVATION AND DISPOSAL OF CONTAMINATED SOILS	
	SUMMARY	

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Laboratory testing results dated 26 June 2015
Appendix 3	Laboratory testing results dated 29 July 2015
Appendix 4	Waste Classification Report

1 INTRODUCTION

- 1.1 This report has been prepared on the instruction of Mr B Williams of John Pointon & Sons Ltd. The report refers to the removal of an underground petrol tank and hydrocarbon contaminated soils from the car park of the former New Inn public house, Leek Road, Longsdon.
- 1.2 Reference had been made to the following sources of information:
 - Wardell Armstrong report no. ST11160-J01 "Former New Inn, Longsdon nr. Leek, Phase 1 and 2 Site Investigation (contamination) Report" dated August 2009;
 - Staffordshire County Council Petroleum Officer's report dated 24 June 2009 (appended to Wardell Armstrong report ST11160-J01).

2 BACKGROUND

- 2.1 The site is located at the junction of Leek Road (A53) and Micklea Lane in Longsdon, Staffordshire Moorlands. The site occupies an area of approximately 40x30m and comprises the disused New Inn buildings in the north and a former car park in the centre and south. The site boundary can be seen in Appendix 1.
- 2.2 Historical mapping indicates that the site has been occupied by the New Inn buildings since at least 1879. The site has also been used as a petrol filling station. A Staffordshire County Council Petroleum Officer's report identified the presence of a 2250L sub-surface petrol tank, that was installed in 1960 and decommissioned by infilling with gravel in 1978.
- 2.3 The presence and approximate location of the petrol tank was confirmed in Wardell Armstrong report no. ST11160-J01, via a ground penetrating radar survey. Whilst no evidence of soil contamination was found in the vicinity of the tank during the site investigation that preceded that report, the possible presence of contamination was not discounted and the report recommended that further assessment be undertaken during tank removal.

3 TANK REMOVAL

- 3.1 The identified location of the fuel tank was established on site and the overlying soils excavated to expose the top of the tank. A Wardell Armstrong Engineer visited the site on 3 June 2015, in order to assess the size, characteristics and condition of the tank. Following this assessment, it was concluded that the tank was contained within a brick structure on a bed of sand. The top of the tank was observed to be open and containing an unknown volume of water.
- 3.2 Following discussions with specialist tank removal contractor, King Tanktechnic Ltd, a process was agreed for the degassing, excavation and cleaning of the tank. This process was:
 - a. To uplift any remaining liquid and dispose;
 - b. Carry out gas tests and cold cut the tank safely sufficiently to allow the vessel to be lifted, so that any remaining detritus can be removed;
 - c. Remove tank washings, detergents and sludges to a licensed waste disposal site;
 - d. Removal of the tank from site.
- 3.3 This work was carried out on 16 June 2015 and a gas safety certificate issued, allowing the tank to be safely disposed of off-site at licenced scrap metal merchant R Bestwick & Sons Ltd of Leek.
- 3.4 Gravel infill and a quantity of sand forming the tank bed were excavated and stockpiled on site on sheeting (later referred to as Arisings Pile A), geochemical testing. A small pipe which had been disconnected from the tank was also excavated and stockpiled alongside Arisings Pile A.
- 3.5 Once the tank had been removed from the ground and safely disposed of, soil samples were taken from the sides of the excavation, the tank bedding sand and the pipe bed. These samples were dispatched to ALcontrol Laboratories and analysed for the presence of petroleum hydrocarbons. Table 1, below, summarises the results of this testing. The full set of results is provided at Appendix 2.

Table 1											
		Soil TPH testi	ng results, samı	oled 16 June 20	15						
	Units	Excavation Sides (range)	Tank bed sand	Pipe bed	Assessment Criteria Value	Assessment Criteria Exceedances					
Aliphatics >C5-C6	μg/kg	<10 - 11.3	<10	<10	42,000*	0					
Aliphatics >C6-C8	μg/kg	<10 – 40.3	19.2	18.1	100,000*	0					
Aliphatics >C8-C10	μg/kg	<10 - 56.7	46.3	20.3	27,000*	0					
Aliphatics >C10-C12	μg/kg	<10 – 78.1	17	12.4	130,000*	0					
Aliphatics >C12-C16	μg/kg	1,490 - 54,000	2980	5,470	1,100,000*	0					
Aliphatics >C16-C21	μg/kg	2,250 – 43,400	16,600	22,800	65,000,000*	0					
Aliphatics >C21-C35	μg/kg	6,710 – 73,600	109,000	220,000							
Aliphatics >C35-C44	μg/kg	814 – 48,100	50,900	87,600	65,000,000*	0					
Aromatics >EC5-EC7	μg/kg	<10	<10	<10	70,000*	0					
Aromatics >EC7-EC8	μg/kg	<10	<10	15.8	130,000*	0					
Aromatics >EC8-EC10	μg/kg	<10 – 37.8	33.9	28.3	34,000*	0					
Aromatics >EC10-EC12	μg/kg	<10-52.9	11.3	<10	74,000*	0					
Aromatics >EC12-EC16	μg/kg	<100-9,160	40,400	7,520	140,000*	0					
Aromatics >EC16-EC21	μg/kg	2,750 – 177,000	684,000	82,800	260,000*	1					
Aromatics >EC21-EC35	μg/kg	11,500 – 715,000	1,580,000	522,000	1,100,000*	1					
Aromatics >EC35-EC44	μg/kg	5,090 – 246,000	412,000	235,000	1,100,000*	0					
Aromatics >EC40-EC44	μg/kg	2,360 – 92,700	144,000	95,600	n/a	n/a					
Benzene	μg/kg	<10	<10	<10	80**	0					
Ethylbenze ne	μg/kg	<3	<3	3.39	65,000**	0					
m,p-Xylene	μg/kg	<6	<6	9.04	42,000**	0					
o-Xylene	μg/kg	<3	<3	<3							
Toluene	μg/kg	<2 - 3.04	3.39	15.8	120,000**	0					
MTBE	μg/kg	<5	<5	<5	n/a	n/a					

^{*} The LQM/CIEH S4UL's for Human Health Risk Assessment, published by Land Quality Press (2014), based upon the assumption of 1% soil organic matter.

^{**} DEFRA/EA Soil Guideline Value (SGV) for residential land use, based upon the assumption of 1% soil organic matter.

- 3.6 Only one sample exceeded human health assessment criteria. This was a sample taken from the tank bedding sand. It should be noted that the sample was taken from a section of sand showing visual signs of contamination and is considered to represent a worst case scenario for the tank bed.
- 3.7 As the samples from the excavation sides did not exceed human health risk assessment criteria, it was concluded that no further excavation was required based upon the concentrations of petroleum hydrocarbons contained within the soils. However, the risk of vapour migration from the soils could not be discounted and was to be addressed further.

4 EXCAVATION AND DISPOSAL OF CONTAMINATED SOILS

- 4.1 A Wardell Armstrong Engineer subsequently returned to site on 16 July 2015 and used a photo ionisation detector (PID) to assess the risk posed by vapour migration from soils in the vicinity of the previously removed fuel tank. Progressive lateral excavation took place until the PID readings reached a minimal level (i.e. close to zero) and the arisings from this process were segregated on sheeting, pending confirmation by laboratory analysis (Arisings Pile B).
- 4.2 Samples were from taken from soils at the limits of the excavation. Table 2, below, summarises the TPH testing results. The full set of results is presented at Appendix 3.

	Table 2													
	Soil TPH testing results, sampled 16 July 2015													
	Units	Arisings Pile A	Assessment Criteria Value	Assessment Criteria Exceedances										
Aliphatics >C5-C6	μg/kg	229	<10	<10	42,000*	0								
Aliphatics >C6-C8	μg/kg	723	24	<10	100,000*	0								
Aliphatics >C8-C10	μg/kg	9,490	43.5	<10	27,000*	0								
Aliphatics >C10-C12	μg/kg	5,260	33	<10	130,000*	0								
Aliphatics >C12-C16	μg/kg	52,700	5600	<100 - 1150	1,100,000*	0								
Aliphatics >C16-C21	μg/kg	81,500	16900	<100-3950	65,000,000*	0								
Aliphatics >C21-C35	μg/kg	597,000	23400	5190-19400										
Aliphatics >C35-C44	μg/kg	597,000	<100	<100-2340	65,000,000*	0								

	Table 2 (continued)											
		Soil TPH t	•	ampled 16 July 20:	15							
_	Units	Tank infill & Tank bed sand	Tank Excavation sides	Excavation Sides (range)	Assessment Criteria Value	Assessment Criteria Exceedances						
Aromatics >EC5-EC7	μg/kg	<10	<10	<10	70,000*	0						
Aromatics >EC7-EC8	μg/kg	402	<10	<10	130,000*	0						
Aromatics >EC8-EC10	μg/kg	15,300	28.5	<10	34,000*	0						
Aromatics >EC10-EC12	μg/kg	3,510	22.5	<10-11.5	74,000*	0						
Aromatics >EC12-EC16	μg/kg	227,000	2460	<100-3050	140,000*	1						
Aromatics >EC16-EC21	μg/kg	778,000	17800	<100-9560	260,000*	1						
Aromatics >EC21-EC35	μg/kg	1,890,000	55200	8740-53800	1,100,000*	1						
Aromatics >EC35-EC44	μg/kg	944,000	14800	571-17600	1,100,000*	0						
Aromatics >EC40-EC44	μg/kg	427,000	5090	<100-7300	n/a	n/a						
Benzene	μg/kg	<10	<10	<10	80**	0						
Ethylbenzene	μg/kg	214	<3	<3	65,000**	0						
m,p-Xylene	μg/kg	5,100	<6	<6	42,000**	0						
o-Xylene	μg/kg	3,680	<3	<3]							
Toluene	μg/kg	402	<2	<2	120,000**	0						
MTBE	μg/kg	<5	<5	<5	n/a	n/a						

^{*} The LQM/CIEH S4UL's for Human Health Risk Assessment, published by Land Quality Press (2014), based upon the assumption of 1% soil organic matter.

- 4.3 As can be seen from Table 2, with the exception of the tank infill gravel and tank bed sand, none of the results exceeded human health criteria assessment values. The material removed from the sides of the tank excavation can be classified as non-hazardous waste and further excavation is not considered necessary.
- 4.4 Due to the assessment criteria exceedances highlighted in Table 2, Arisings Pile A requires off-site disposal as hazardous waste. A hazardous waste assessment has been carried out, which classifies it as carcinogenic, mutagenic and ecotoxic. The outcome of this assessment can be seen in Appendix 4.

^{**} DEFRA/EA Soil Guideline Value (SGV) for residential land use, based upon the assumption of 1% soil organic matter.

4.5 All excavated materials were stockpiled on plastic sheeting pending removal to a licenced soil treatment facility. Following the removal of waste soils from site, it is considered unlikely that hydrocarbon contaminated soils pose a risk to human health.

5 SUMMARY

- 5.1 Wardell Armstrong report no. ST11160-J01, dated August 2009, identified the presence of a petrol tank beneath the car park of the former New Inn public house, off Leek Road, Longsdon. Wardell Armstrong were commissioned to oversee the removal of the tank and any associated hydrocarbon soils from site.
- 5.2 Excavation of the overlying ground allowed for an assessment of the size, condition and setting of the tank. Information gained from this assessment was used to inform a tank removal strategy which was agreed with specialist contractors King Tanktechnic Ltd, who completed the cleaning and removal of the tank on 16 June 2015.
- 5.3 Following laboratory chemical analyses, the gravel tank infill and a quantity of sand from the tank bedding (Arisings Pile A) were identified as contaminated waste and should be removed from site as hazardous waste.
- 5.4 Chemical testing of samples taken from the sides of the excavation revealed that the soils did not contain petroleum hydrocarbons at concentrations which exceed human health assessment criteria. However, due to the risk of vapour migration, soils surrounding the former tank were screened using a photo ionisation detector (PID). Subsequent laboratory analysis of the PID screened materials identified no human health assessment criteria exceedances and it was concluded that no further excavation was required.
- 5.5 It is considered that the risks posed to human health by hydrocarbon contaminated soils associated with the former fuel storage tank have been satisfactorily addressed.

Appendix 1 Site Location Plan

Appendix 2 Laboratory testing results dated 26 June 2015

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Wardell Armstrong LLP Sir Henry Doulton House Forge Lane Etruria Stoke on Trent Staffordshire ST1 5BD

Attention: Matt Woodcock

CERTIFICATE OF ANALYSIS

 Date:
 26 June 2015

 Customer:
 H_WARDELL_SKT

Sample Delivery Group (SDG): 150617-77
Your Reference: ST11160

Location: New Inn, Leek Road, Longsdon

Report No: 318853

We received 6 samples on Wednesday June 17, 2015 and 6 of these samples were scheduled for analysis which was completed on Friday June 26, 2015. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

 SDG:
 150617-77

 Job:
 H_WARDELL_SKT-154

 Client Reference:
 ST11160

Location: Customer: Attention: New Inn, Leek Road, Longsdon Wardell Armstrong LLP Matt Woodcock Order Number: Report Number: Superseded Report:

318853

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
11548136	ST001		0.50 - 1.00	16/06/2015
11548141	ST002		1.50 - 2.00	16/06/2015
11548145	ST003		1.50 - 2.00	16/06/2015
11548150	ST004		2.00 - 2.50	16/06/2015
11548156	ST005		0.00 - 0.50	16/06/2015
11548161	ST006		0.00 - 0.50	16/06/2015

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

150617-77 SDG: Location: New Inn, Leek Road, Longsdon Order Number: Wardell Armstrong LLP H_WARDELL_SKT-154 318853 Job: **Customer:** Report Number: Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Client Reference. 3111100		Attention	•	IV	ıalı	vv	JUC	100	JUN	٠		
SOLID Results Legend X Test	Lab Sample I		11548136	11548141		11548145		11548150	1040100	110100	11548161	
No Determination Possible	Custome Sample Refei			ST001	81002		ST003		ST004	0.000	CTOOL	ST006
	AGS Refere	nce										
	Depth (m		0.50 - 1.00	1.50 - 2.00		1.50 - 2.00		2.00 - 2.50	0.00 - 0.50		0.00 - 0.50	
	Containe	r	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	Eng VOC (ALEGAE)	60g VOC (ALE215)
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 6	X		X	X		X		X)	
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 6	X		X	X		X		X)	<u>(</u>
GRO by GC-FID (S)	All	NDPs: 0 Tests: 6		X)	2	X		X	2	<	X
Sample description	All	NDPs: 0 Tests: 6	X		X	X		X		X)	(
TPH CWG GC (S)	All	NDPs: 0 Tests: 6	X		X	X		X		X)	(

Validated

150617-77 SDG: Job:

H_WARDELL_SKT-154 ST11160

Location: **Customer:** Attention: New Inn, Leek Road, Longsdon Wardell Armstrong LLP

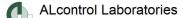
Matt Woodcock

Order Number: Report Number: Superseded Report:

318853

Sample Descriptions

Grain Sizes


Client Reference:

very fine	<0.0	63mm	fine	0.063mm - 0.1mm	me	dium	0.1mm	- 2mm	coarse	2mm	- 10mm	very coar	rse >		
Lab Sample	No(s)	Custon	ner Sample R	ef. Depth (r	n)	Co	lour	Descripti	ion	Grain size	Incl	usions	Inclusions		
115481	36		ST001	0.50 - 1.	00	ВІ	ack	Loamy Sa	and	0.1 - 2 mm	Crush	ed Brick	Vegetation		
115481	11548141		ST002		00	Beige		Sandy Clay		Sandy Cl		0.1 - 2 mm	St	ones	None
115481	11548145		11548145		ST003	1.50 - 2.	00	ВІ	ack	Loamy Sa	and	0.1 - 2 mm	St	ones	None
115481	50	ST004 2.00 - 2.50		R	led	Sand 0.1 - 2 mr		0.1 - 2 mm	St	ones	None				
115481	56		ST005	0.00 - 0.	50	ВІ	ack	Sand		0.1 - 2 mm	St	ones	None		
11548161			ST006	0.00 - 0.	50	BI	ack	Loamy Sa	and	0.1 - 2 mm	Crush	ed Brick	None		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 150617-77 Location: New Inn, Leek Road, Longsdon Order Number:

Job: H_WARDELL_SKT-154 Customer: Wardell Armstrong LLP Report Number: 318853
Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Results Legend # ISO17025 accredited.	Cus	tomer Sample R	ST001	ST002	ST003	ST004	ST005	ST006
M mCERTS accredited.								
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m)	0.50 - 1.00	1.50 - 2.00	1.50 - 2.00	2.00 - 2.50	0.00 - 0.50	0.00 - 0.50
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid 16/06/2015	Soil/Solid 16/06/2015	Soil/Solid 16/06/2015	Soil/Solid 16/06/2015	Soil/Solid 16/06/2015	Soil/Solid 16/06/2015
** % recovery of the surrogate standard	d to	Sample Time	10/00/2015	10/00/2015	10/00/2015	10/00/2015	10/00/2015	10/00/2015
check the efficiency of the method. I results of individual compounds with	The	Date Received	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015
samples aren't corrected for the reco	overy	SDG Ref	150617-77 11548136	150617-77 11548141	150617-77 11548145	150617-77 11548150	150617-77 11548156	150617-77 11548161
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	La	ab Sample No.(s) AGS Reference		11346141	11546145	11346130	11346130	11346101
Component	LOD/Units	Method						
Moisture Content Ratio (%	%	PM024	22	31	34	21	12	12
of as received sample)								
				<u> </u>				

Validated

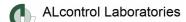
SDG: 150617-77

Job: H_WARDELL_SKT-154

Client Reference: ST11160

Location: New Inn, Leek Road, Longsdon **Customer:** Wardell Armstrong LLP

Matt Woodcock


Attention:

Order Number:

Report Number: 318853 Superseded Report:

TPH CWG (S)

TPH CWG (S)								
Results Legend # ISO17025 accredited. M mCERTS accredited.	C	ustomer Sample R	ST001	ST002	ST003	ST004	ST005	ST006
aq Aqueous / settled sample.		Depth (m)	0.50 - 1.00	1.50 - 2.00	1.50 - 2.00	2.00 - 2.50	0.00 - 0.50	0.00 - 0.50
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
* Subcontracted test.		Date Sampled	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015	16/06/2015
** % recovery of the surrogate stand check the efficiency of the method		Sample Time	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015	17/06/2015
results of individual compounds w	rithin	Date Received SDG Ref	150617-77	150617-77	150617-77	150617-77	150617-77	150617-77
samples aren't corrected for the re (F) Trigger breach confirmed		Lab Sample No.(s)	11548136	11548141	11548145	11548150	11548156	11548161
1-5&+§@ Sample deviation (see appendix)		AGS Reference						
Component	LOD/Units			115				
GRO Surrogate %	%	TM089	44	113	67	140	32	86
recovery**								
GRO TOT (Moisture	<44 µg/k	g TM089	<44	<44	<44	280	141	116
Corrected)			M	М	M	M	М	M
Methyl tertiary butyl ether	<5 μg/kg	g TM089	<5	<5	<5	<5	<5	<5
(MTBE)			М	M	M	M	M	M
Benzene	<10 µg/k	g TM089	<10	<10	<10	<10	<10	<10
			М	M	M	M	М	M
Toluene	<2 μg/kg	g TM089	2.58	<2	3.04	<2	3.39	15.8
			М	M	M	M	M	M
Ethylbenzene	<3 µg/kg	g TM089	<3	<3	<3	<3	<3	3.39
			М	M	M	M	M	М
m,p-Xylene	<6 µg/kg	g TM089	<6	<6	<6	<6	<6	9.04
			М	M	M	M	M	M
o-Xylene	<3 µg/kg	g TM089	<3	<3	<3	<3	<3	<3
			М	M	M	M	M	M
sum of detected mpo	<9 µg/kg	TM089	<9	<9	<9	<9	<9	9.04
xylene by GC								
sum of detected BTEX by	<24 µg/k	g TM089	<24	<24	<24	<24	<24	28.2
GC								
Aliphatics >C5-C6	<10 µg/k	g TM089	<10	<10	<10	11.3	<10	<10
•								
Aliphatics >C6-C8	<10 µg/k	g TM089	<10	<10	<10	40.3	19.2	18.1
,	1 1 1	5	-				-	
Aliphatics >C8-C10	<10 µg/k	g TM089	<10	11.5	<10	56.7	46.3	20.3
/pau.ss	, o µg/	.9				00		20.0
Aliphatics >C10-C12	<10 µg/k	g TM089	<10	<10	<10	78.1	17	12.4
7.11.01.00.4.01.0.12	γιο μg/π	9 1111000	110		110	70.1	''	12.1
Aliphatics >C12-C16	<100	TM173	1830	1490	1720	54000	2980	5470
7 iipilauc3 - 012 010	μg/kg	1101170	1000	1430	1720	04000	2300	0470
Aliphatics >C16-C21	<100	TM173	7340	2950	2250	43400	16600	22800
Aliphatics >C10-C21	μg/kg	1101173	7 340	2930	2230	43400	10000	22000
Aliphatics >C21-C35	<100	TM173	73600	6710	16500	41100	109000	220000
Aliphatics >C21-C35	μg/kg	1101173	73000	0710	10300	41100	109000	220000
Alimbatica > C2F C44	<100	TM173	48100	814	1510	20100	50900	87600
Aliphatics >C35-C44		1101173	40100	014	1510	20100	50900	0/000
Total Aliabatics > C40 C44	μg/kg	TM470	424000	40000	24000	159000	180000	220000
Total Aliphatics >C12-C44	<100	TM173	131000	12000	21900	159000	180000	336000
A	μg/kg	T14000	-40	.40	-40	-40	.40	-40
Aromatics >EC5-EC7	<10 µg/k	g TM089	<10	<10	<10	<10	<10	<10
	12 "	=						
Aromatics >EC7-EC8	<10 µg/k	g TM089	<10	<10	<10	<10	<10	15.8
		=						
Aromatics >EC8-EC10	<10 µg/k	g TM089	<10	<10	<10	37.8	33.9	28.3
Aromatics >EC10-EC12	<10 µg/k	g TM089	<10	<10	<10	52.9	11.3	<10
Aromatics >EC12-EC16	<100	TM173	9160	<100	1940	5540	40400	7520
	μg/kg							
Aromatics >EC16-EC21	<100	TM173	177000	2750	14100	12700	684000	82800
	μg/kg							
Aromatics >EC21-EC35	<100	TM173	715000	11500	59700	42900	1580000	522000
	μg/kg							
Aromatics >EC35-EC44	<100	TM173	246000	5090	16100	33500	412000	235000
	μg/kg							
Aromatics >EC40-EC44	<100	TM173	92700	2360	5580	14900	144000	95600
	μg/kg			<u> </u>				
Total Aromatics	<100	TM173	1150000	19300	91900	94600	2710000	847000
>EC12-EC44	μg/kg							
Total Aliphatics &	<100	TM173	1280000	31300	114000	254000	2890000	1180000
Aromatics >C5-C44	μg/kg							
		_						

Validated

SDG: 150617-77 **Job**: H_WARDE

Client Reference:

H_WARDELL_SKT-154 ST11160 Location: New Customer: Ward Attention: Matt

New Inn, Leek Road, Longsdon Wardell Armstrong LLP Matt Woodcock Order Number: Report Number: Superseded Report:

318853

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected	
ASB_PREP					
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material			
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)			
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID			

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

SDG: 150617-77 Location: New Inn, Leek Road, Longsdon Order Number: Wardell Armstrong LLP H_WARDELL_SKT-154 Job: **Customer:**

318853 Report Number: Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Test Completion Dates

Lab Sample No(s)	11548136	11548141	11548145	11548150	11548156	11548161
Customer Sample Ref.	ST001	ST002	ST003	ST004	ST005	ST006
AGS Ref.						
Depth	0.50 - 1.00	1.50 - 2.00	1.50 - 2.00	2.00 - 2.50	0.00 - 0.50	0.00 - 0.50
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
EPH CWG (Aliphatic) GC (S)	23-Jun-2015	24-Jun-2015	24-Jun-2015	24-Jun-2015	25-Jun-2015	23-Jun-2015
EPH CWG (Aromatic) GC (S)	23-Jun-2015	24-Jun-2015	24-Jun-2015	24-Jun-2015	25-Jun-2015	23-Jun-2015
GRO by GC-FID (S)	25-Jun-2015	25-Jun-2015	25-Jun-2015	26-Jun-2015	25-Jun-2015	25-Jun-2015
Sample description	19-Jun-2015	19-Jun-2015	19-Jun-2015	19-Jun-2015	19-Jun-2015	19-Jun-2015
TPH CWG GC (S)	25-Jun-2015	25-Jun-2015	25-Jun-2015	26-Jun-2015	25-Jun-2015	25-Jun-2015

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

150617-77 Location: New Inn, Leek Road, Longsdon Order Number:

Job: H_WARDELL_SKT-154 Customer: Wardell Armstrong LLP Report Number: 318853

Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Appendix General

- 1. Results are expressed on a dry weight basis (dried at 35° C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.
- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 month after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 14. **Product analyses** -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	Brown Asbestos
Crodobite	Blue Asbestos
Fibrous Adindite	-
Fibrous Anthophylite	-
Fibrous Trendite	Ξ

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 3 Laboratory testing results dated 29 July 2015

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US

Tel: (01244) 528700 Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Wardell Armstrong LLP Sir Henry Doulton House Forge Lane Etruria Stoke on Trent Staffordshire ST1 5BD

Attention: Matt Woodcock

CERTIFICATE OF ANALYSIS

 Date:
 29 July 2015

 Customer:
 H_WARDELL_SKT

Sample Delivery Group (SDG): 150718-41
Your Reference: ST11160

Location: New Inn, Leek Road, Longsdon

Report No: 323123

We received 6 samples on Saturday July 18, 2015 and 6 of these samples were scheduled for analysis which was completed on Wednesday July 29, 2015. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: 150718-41 H_WARDELL_SKT-154 Job: Client Reference:

ST11160 Attention:

Location: New Inn, Leek Road, Longsdon **Customer:** Wardell Armstrong LLP Matt Woodcock

Order Number: Report Number: Superseded Report:

323123

Received Sample Overview

Lab Sample No(s) Custo	ner Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
11738916	SR001		0.00 - 0.00	16/07/2015
11738920	SR002		0.00 - 0.00	16/07/2015
11738926	SR003		0.00 - 0.00	16/07/2015
11738933	SR004		0.00 - 0.00	16/07/2015
11738939	SR005		0.00 - 0.00	16/07/2015
11738945	SR007		0.00 - 0.00	16/07/2015

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

SDG: 150718-41 Location: New Inn, Leek Road, Longsdon Order Number: Job: H_WARDELL_SKT-154 Wardell Armstrong LLP 323123 **Customer:** Report Number: Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Oliche Relectories. OTTT100		Attention	•		nat	. v v	00	uo	501	`		_	
SOLID Results Legend X Test	Lab Sample I	No(s)		11738916	1170020	7770000	11738926		11738933		11738939		11738945
No Determination Possible	Custome Sample Refer			SR001	SKOOZ		SR003		SR004		SR005		SR007
	AGS Refere	nce											
	Depth (m	-		0.00 - 0.00	0.00		0.00 - 0.00		0.00 - 0.00		0.00 - 0.00		0.00 - 0.00
	Containe	r	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	60g VOC (ALE215)	250g Amber Jar (AL	60n VOC (ALE215)
Asbestos ID in Solid Samples	All	NDPs: 0 Tests: 2	x		X								
EPH CWG (Aliphatic) GC (S)	All	NDPs: 0 Tests: 6	X		X	×	•	X		X		X	
EPH CWG (Aromatic) GC (S)	All	NDPs: 0 Tests: 6	x		X	X	•	X		X		X	
GRO by GC-FID (S)	All	NDPs: 0 Tests: 6		X	2	(X		X		X		X
Hexavalent Chromium (s)	All	NDPs: 0 Tests: 2	X		X								
Metals in solid samples by OES	All	NDPs: 0 Tests: 2	x		X								
PAH by GCMS	All	NDPs: 0 Tests: 2	X		X								
Sample description	All	NDPs: 0 Tests: 6	X		X	×		x		X		X	
TPH CWG GC (S)	All	NDPs: 0 Tests: 6	x		X	×		X		X		X	

Validated

150718-41 SDG:

Job: H_WARDELL_SKT-154 Client Reference: ST11160

Location: **Customer:** Attention:

New Inn, Leek Road, Longsdon Wardell Armstrong LLP Matt Woodcock

Order Number: Report Number: Superseded Report:

323123

Sample Descriptions


Grain Sizes

very fine	<0.0	63mm	fine	0.06	3mm - 0.1mm	med	dium	0.1mm	- 2mm	coar	se	2mm - 10)mm	very co	arse	>10mi
Lab Sample	No(s)	Custon	ner Sample R	Ref.	Depth (m)		Col	our	Descrip	tion	Gı	ain size	Incl	usions	Inc	lusions 2
117389 ⁻	16		SR001		0.00 - 0.00		Dark I	Brown	Sandy L	.oam	0.1	1 - 2 mm	Sto	ones	Ve	getation
1173892	20		SR002		0.00 - 0.00		Dark I	Brown	Silty Clay	Loam	0.06	3 - 0.1 mm	Sto	ones	Ve	getation
1173892	26		SR003		0.00 - 0.00		Dark I	Brown	Silty C	lay	0.06	3 - 0.1 mm	N	one		None
1173893	33		SR004		0.00 - 0.00		Dark I	Brown	Clay Lo	am	0.06	3 - 0.1 mm	Sto	ones		None
1173893	39		SR005		0.00 - 0.00		Dark I	Brown	Silty C	lay	0.06	3 - 0.1 mm	Sto	ones		None
1173894	45		SR007		0.00 - 0.00		Light I	Brown	Silty C	lay	0.06	3 - 0.1 mm	N	one		None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 150718-41 Location: New Inn, Leek Road, Longsdon Order Number:

Wardell Armstrong LLP Job: H_WARDELL_SKT-154 323123 **Customer:** Report Number:

Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Signature Sign				0744	20000			0.000	00000	20040
Disable of Historic ample. Disable of Historic disability Disability Disable of Historic disability Disab	M mCERTS accredited.	Cı	ustomer Sample R	SR001	SR002		SR003	SR004	SR005	SR007
***Subcontracted test.** ***Is recovery of the surrogate standard to check the efficiency of the surrogate standard to check the surro	diss.filt Dissolved / filtered sample.									
Check the efficiency of the method. The results of individual components within samples aren't corrected for the recovery of the method. The results of individual components within samples aren't corrected for the recovery of the method. The results of individual components of the recovery of the samples No.(s) AGS Reference Component	* Subcontracted test.									
SDG Ret SDG	check the efficiency of the method.	. The								
Trigger breach confirmed Lab Sample No.(s) AGS Reference	results of individual compounds w	ithin		150718-41	150718-41		150718-41	150718-41	150718-41	150718-41
Component CoD/Units Method Moisture Content Ratio (% PM024 8.4 34 29 30 33 28	(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)	· l	Lab Sample No.(s) AGS Reference		11738920		11738926	11738933	11738939	11738945
Of as received sample) <0.6 mg/kg	Component		Method		2.1			22	22	22
Marcury Mark	of as received sample)	%	PM024	8.4	34		29	30	33	28
Arsenic	Chromium, Hexavalent		TM151			#				
Marcury Content Cont	Arsenic	-	TM181			#				
Mg/kg	7 4 5 5 1 1 5					М				
Chromium < 0.9 mg/kg TM181 mg/kg 28.6 mg/kg 19.2 mg/kg Copper < 1.4 mg/kg	Cadmium		TM181			М				
Copper <1.4 mg/kg TM181 mg/kg 16.3 mg/kg 44.4 mg/kg M <td>Chromium</td> <td></td> <td>TM181</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chromium		TM181							
mg/kg	0		TN404			М				
mg/kg M M Mercury <0.14 mg/kg	Copper		TIMITOT			М				
Mercury <0.14 mg/kg TM181 white <0.14 white <0.14 mg/kg M M M Nickel <0.2 mg/kg	Lead		TM181		1	М				
Nickel < 0.2 mg/kg TM181 12.4 16.9 M Selenium <1 mg/kg	Mercury	<0.14	TM181	<0.14	<0.14					
mg/kg M M Selenium <1 mg/kg	Nickel		TM181			M				
# # # Zinc <1.9 TM181 78.5 148		mg/kg		М		М				
Zinc <1.9 TM181 78.5 148	Selenium	<1 mg/kg	TM181			#				
mgkg M M M	Zinc		TM181	78.5	148					
		mg/kg		М		М				
						-				
						-				
						-				

Validated

SDG: 150718-41 Location: New Inn, Leek Road, Longsdon Order Number:

Job: H_WARDELL_SKT-154 Customer: Wardell Armstrong LLP Report Number: 323123
Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

PAH by GCMS

PAH by GCMS						
Results Legend # ISO17025 accredited.	•	Customer Sample R	SR001	SR002		
M mCERTS accredited. aq Aqueous / settled sample.						
diss.filt Dissolved / filtered sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00		
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Sample Type Date Sampled	Soil/Solid 16/07/2015	Soil/Solid 16/07/2015		
** % recovery of the surrogate standa	rd to	Sample Time	10/01/2013	10/0//2013		
check the efficiency of the method. results of individual compounds wi		Date Received	18/07/2015	18/07/2015		
samples aren't corrected for the rec		SDG Ref	150718-41	150718-41		
(F) Trigger breach confirmed 1-5&+§@ Sample deviation (see appendix)		Lab Sample No.(s)	11738916	11738920		
Component	LOD/Unit	AGS Reference s Method				
Naphthalene-d8 %	%	TM218	100	83.2		
recovery**	/0	1111210	100	00.2		
	%	TM218	93.9	79.3		
Acenaphthene-d10 % recovery**	70	1 1012 10	93.9	19.5		
	0.4					
Phenanthrene-d10 %	%	TM218	88.3	75.6		
recovery**						
Chrysene-d12 %	%	TM218	82.6	75.6		
recovery**						
Perylene-d12 %	%	TM218	80.9	75.4		
recovery**						
Naphthalene	<9 µg/k	g TM218	20000	336		
, tapitalaisits	o pg///	.9	M	М		
Accepability	<12 ug/l	kg TM218	<120	102		
Acenaphthylene	<12 µg/l	ng IIVI∠IO				
Assessability		T140:5	M	M		
Acenaphthene	<8 µg/k	g TM218	48700	236		
			M	М		
Fluorene	<10 µg/l	kg TM218	31500	214		
			M	М		
Phenanthrene	<15 µg/l	kg TM218	273000	2350		
		- I	M	М		
Anthracene	<16 µg/l	kg TM218	39100	958		
7 than adding	то рул		M	М		
Elvaranth and	447	TM040				
Fluoranthene	<17 µg/l	kg TM218	249000	10100		
			M	M		
Pyrene	<15 µg/l	kg TM218	237000	8680		
			M	M		
Benz(a)anthracene	<14 µg/l	kg TM218	94800	5380		
			M	M		
Chrysene	<10 µg/l	kg TM218	104000	4890		
,	'0	Ĭ	М	М		
Benzo(b)fluoranthene	<15 µg/l	kg TM218	112000	5850		
Delizo(b)lidoraritrerie	15 μg/1	Ng TWIZ 10	112000 M	M		
Danna (Is)fissa anath an a	44.4	TM040				
Benzo(k)fluoranthene	<14 µg/l	kg TM218	37400	1980		
			M	М		
Benzo(a)pyrene	<15 µg/l	kg TM218	95400	4650		
			M	M		
Indeno(1,2,3-cd)pyrene	<18 µg/l	kg TM218	44900	2310		
			M	M		
Dibenzo(a,h)anthracene	<23 µg/l	kg TM218	13300	621		
. , ,	'0	Ĭ	М	М		
Benzo(g,h,i)perylene	<24 µg/l	kg TM218	61700	2390		
Benzo(g,n,n)perylene	-2-τ μg/1	Ng TWIZ 10	M	2000		
PAH, Total Detected	<118	TM218	1460000	51100		
USEPA 16	μg/kg	1 1012 10	1400000	31100		
COLI A 10	µg/kg	_				
		_				

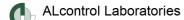
Validated

SDG: 150718-41

H_WARDELL_SKT-154 Job:

Client Reference: ST11160 Location: **Customer:**

Attention:


New Inn, Leek Road, Longsdon Wardell Armstrong LLP

Matt Woodcock

Order Number: Report Number: Superseded Report:

323123

TPH CWG (S)												
Results Legend # ISO17025 accredited. M mCERTS accredited.		Customer Sample R	SR001	SR002		SR003		SR004		SR005	SR007	
aq Aqueous / settled sample.		Depth (m)	0.00 - 0.00	0.00 - 0.00		0.00 - 0.00		0.00 - 0.00		0.00 - 0.00	0.00 - 0.00	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid		Soil/Solid		Soil/Solid		Soil/Solid	Soil/Solid	
* Subcontracted test.		Date Sampled	16/07/2015	16/07/2015		16/07/2015		16/07/2015		16/07/2015	16/07/2015	
** % recovery of the surrogate standa check the efficiency of the method		Sample Time										
results of individual compounds w	ithin	Date Received SDG Ref	18/07/2015 150718-41	18/07/2015 150718-41		18/07/2015 150718-41		18/07/2015 150718-41		18/07/2015 150718-41	18/07/2015 150718-41	
samples aren't corrected for the re (F) Trigger breach confirmed	covery	Lab Sample No.(s)	11738916	11738920		11738926		11738933		11738939	11738945	
1-5&+§@ Sample deviation (see appendix)		AGS Reference										
Component	LOD/Unit	s Method										
GRO Surrogate %	%	TM089	109	68		87		76		111	69	
recovery**												
GRO TOT (Moisture	<44 µg/l	kg TM089	34900	159		<44		<44		<44	<44	
Corrected)			M		M		М		М	M		M
Methyl tertiary butyl ether	<5 μg/k	g TM089	<5	<5		<5		<5		<5	<5	П
(MTBE)		Ĭ	M		М		М		М	М		М
Benzene	<10 µg/l	kg TM089	<10	<10		<10		<10		<10	<10	\neg
			М		М		М	,,	М	М		М
Toluene	<2 µg/k	g TM089	402	<2		<2		2.88		<2	<2	
Tolderie	-2 μg/N	1111000	402 M		М	12	М	2.00	М	M.	\ \frac{1}{2}	М
Ethylbenzene	<2 ua/le	a TM089	214	<3	IVI	<3	171	<3	IVI	<3	<3	IVI
Ethylberizerie	<3 µg/k	y HVIOO9	214 M		N 4	\3	М	\3	N 4		\3	N 4
V 1	0 "	T1 1000			М	-	IVI		М	M		М
m,p-Xylene	<6 µg/k	g TM089	5100	<6		<6		<6	,,	<6	<6	
	_		M		M		М	_	М	M	_	М
o-Xylene	<3 µg/k	g TM089	3680	<3	_	<3		<3		<3	<3	
			M		M		М		М	M		М
sum of detected mpo	<9 µg/k	g TM089	8780	<9		<9		<9		<9	<9	
xylene by GC												
sum of detected BTEX by	<24 µg/l	kg TM089	9400	<24		<24		<24		<24	<24	
GC												
Aliphatics >C5-C6	<10 µg/l	kg TM089	229	<10		<10		<10		<10	<10	\neg
Aliphatics >C6-C8	<10 µg/l	kg TM089	723	24		<10		<10		<10	<10	П
'	'	١										
Aliphatics >C8-C10	<10 µg/l	kg TM089	9490	43.5		<10		<10		<10	<10	
								,,				
Aliphatics >C10-C12	<10 µg/l	kg TM089	5260	33		<10		<10		<10	<10	\neg
7.11.01.00.1.01.2	то ру	1111000	0200			10		10		-10		
Aliphatics >C12-C16	<100	TM173	52700	5600		<100		<100	-	1150	<100	-
Aliphatics >C12-C10		1101173	52700	3000		<100		~100		1150	<100	
All I II . 040 004	μg/kg	T14470	0.4500	10000		.400		=00	_	0050	2052	-
Aliphatics >C16-C21	<100	TM173	81500	16900		<100		520		3950	2050	
	μg/kg	=							_			_
Aliphatics >C21-C35	<100	TM173	597000	23400		5190		11800		19400	8280	
	μg/kg											
Aliphatics >C35-C44	<100	TM173	597000	<100		309		1130		2340	<100	
	μg/kg											
Total Aliphatics >C12-C44	<100	TM173	1330000	45900		5490		13500		26800	10300	
	μg/kg											
Aromatics >EC5-EC7	<10 µg/l	kg TM089	<10	<10		<10		<10		<10	<10	
		Ĭ										
Aromatics >EC7-EC8	<10 µg/l	kg TM089	402	<10		<10		<10		<10	<10	\neg
7	. o µg/.											
Aromatics >EC8-EC10	<10 µg/l	kg TM089	15300	28.5		<10		11.5	-	<10	<10	\dashv
, 15.11d105 - E-00-E-0 10	- 10 μg/I	11000	10000	20.5		10		11.5		-10	``'	
Aromatics >EC10-EC12	<10 µg/l	kg TM089	3510	22.5		<10		<10	-	<10	<10	\dashv
Alomatics >EC 10-EC 12	- 10 μg/i	kg HVIU09	3310	22.5		~10		~10		\10	~10	
A	.400	T14470	007000	0.400		-400		1000	_	0050	-400	-
Aromatics >EC12-EC16	<100	TM173	227000	2460		<100		1880		3050	<100	
	μg/kg								_			_
Aromatics >EC16-EC21	<100	TM173	778000	17800		<100		7460		9560	<100	
	μg/kg											
Aromatics >EC21-EC35	<100	TM173	1890000	55200		14400		53800		38200	8740	
	μg/kg											
Aromatics >EC35-EC44	<100	TM173	944000	14800		4850		17600		11300	571	
	μg/kg											
Aromatics >EC40-EC44	<100	TM173	427000	5090		2220		7300		4920	<100	
	μg/kg											
Total Aromatics	<100	TM173	3840000	90300		19300		80700	\Box	62200	9310	\neg
>EC12-EC44	μg/kg											
Total Aliphatics &	<100	TM173	5200000	136000		24800		94200	\neg	89000	19600	\dashv
Aromatics >C5-C44	μg/kg	,						0.200		3000		
	1. 3 3								-			\dashv
									-			\neg

Validated

SDG: 150718-41 Location: New Inn, Leek Road, Longsdon Order Number:

Job: H_WARDELL_SKT-154 Customer: Wardell Armstrong LLP Report Number: 323123
Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Asbestos Identification - Solid Samples

		,					ia can	.8.00			
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SR001 0.00 - 0.00 SOLID 16/07/2015 00:00:00 23/07/2015 08:31:40 150718-41 11738916 TM048	27/7/15	Kevin Gill	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	SR002 0.00 - 0.00 SOLID 16/07/2015 00:00:00 23/07/2015 08:19:40 150718-41 11738920 TM048	27/7/15	Kevin Gill	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

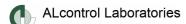
Validated

SDG: 150718-41 Job:

H_WARDELL_SKT-154 Client Reference: ST11160

Location: **Customer:** Attention:

New Inn, Leek Road, Longsdon Wardell Armstrong LLP Matt Woodcock


Order Number: Report Number: Superseded Report:

323123

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogate Corrected
ASB_PREP				
PM001		Preparation of Samples for Metals Analysis		
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM151	Method 3500D, AWWA/APHA, 20th Ed., 1999	Determination of Hexavalent Chromium using Kone analyser		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

 SDG:
 150718-41
 Location:
 New Inn, Leek Road, Longsdon
 Order Number:

 Job:
 H_WARDELL_SKT-154
 Customer:
 Wardell Armstrong LLP
 Report Number:

Client Reference: ST11160 Attention: Matt Woodcock

Report Number: 323123 Superseded Report:

Test Completion Dates

Lab Sample No(s)	11738916	11738920	11738926	11738933	11738939	11738945
Customer Sample Ref.	SR001	SR002	SR003	SR004	SR005	SR007
AGS Ref.						
Depth	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00	0.00 - 0.00
Туре	SOLID	SOLID	SOLID	SOLID	SOLID	SOLID
Asbestos ID in Solid Samples	27-Jul-2015	27-Jul-2015				
EPH CWG (Aliphatic) GC (S)	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015
EPH CWG (Aromatic) GC (S)	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015	27-Jul-2015
GRO by GC-FID (S)	24-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015
Hexavalent Chromium (s)	29-Jul-2015	29-Jul-2015				
Metals in solid samples by OES	28-Jul-2015	28-Jul-2015				
PAH by GCMS	27-Jul-2015	29-Jul-2015				
Sample description	23-Jul-2015	23-Jul-2015	24-Jul-2015	24-Jul-2015	24-Jul-2015	24-Jul-2015
TPH CWG GC (S)	27-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015	29-Jul-2015

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

150718-41 Location: New Inn. Leek Road, Longsdon Order Number: H WARDELL SKT-154 Wardell Armstrong LLP **Customer:**

323123 Report Number: Client Reference: ST11160 Attention: Matt Woodcock Superseded Report:

Appendix General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk) We endeavour to use UKAS/MCERTS Accredited Laboratories who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%, they are generally wider for volatiles analysis, 50-150%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed
§	Sampled on date not provided
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
&	Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method transmitted/polarised microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Chrysofile	White Asbestos
Amoste	BrownAsbestos
Orodobite	Blue Asbestos
Fibrous Adinoite	-
Fibrous Anthophylite	-
Fibrous Trendile	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 4 Waste Classification Report

Waste Classification Report

Job name				
New Inn				
Waste Stream				
New Inn				
Comments				
Project				
ST11160				
Site				
New Inn, Leek Road, Longsdon.				
Classified by				
Name: Woodcock, Matthew Date: 31/07/2015 08:34 UTC Telephone: 0845 111 7777	Company: Wardell Armstrong Sir Henry Doulton House Forge Lane, Etruria Stoke on Trent ST1 5BD			
Report				
Created by: Woodcock, Matthew Created date: 31/07/2015 08:34 UTC				
Job summary				
# Sample Name	Depth [m]	Classification Result	Hazardous properties	Page
1 SR001 2 SR002		Hazardous Non Hazardous	HP 7, HP 11, HP 14	2 5
Appendices				Page
Appendix A: Classifier defined and non Appendix B: Notes Appendix C: Version	CLP determi	nands		7 8 9

Classification of sample: SR001

A Hazardous Waste

Classified as 17 05 03 *

in the European Waste Catalogue

Sample details

Sample Name:

SR001

Sample Depth:

Moisture content: 8.4% (dry weight correction)

0 m

EWC Code:

Entry:

Chapter: 17: Construction and Demolition Wastes (including

excavated soil from contaminated sites)

17 05 03 * (Soil and stones containing hazardous

substances)

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.48%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.48%)

HP 14: Ecotoxic "waste which presents or may present immediate or delayed risks for one or more sectors of the environment"

Risk phrases hit:

R52/53 "Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment"

Because of determinand:

benz[a]anthracene: (conc.: 0.00875%)

Determinands (Moisture content: 8.4%, dry weight correction)

lead compounds (with the exception of those listed separately in this Annex): (Cation conc. entered: 34 mg/kg, converted to compound conc.:47.362 mg/kg or 0.00474%, Note 1 conc.: 0.00314%)

copper sulfate (hydrated): (Cation conc. entered: 16.3 mg/kg, converted to compound conc.:59.081 mg/kg or 0.00591%) chromium(III) oxide: (Cation conc. entered: 28.6 mg/kg, converted to compound conc.:38.561 mg/kg or 0.00386%) cadmium sulfate: (Cation conc. entered: 0.711 mg/kg, converted to compound conc.:1.216 mg/kg or 0.000122%) arsenic trioxide: (Cation conc. entered: 5.99 mg/kg, converted to compound conc.:7.296 mg/kg or 0.00073%) nickel sulfate: (Cation conc. entered: 12.4 mg/kg, converted to compound conc.:30.161 mg/kg or 0.00302%) zinc sulphate: (Cation conc. entered: 78.5 mg/kg, converted to compound conc.:178.819 mg/kg or 0.0179%)

TPH (C6 to C40) petroleum group: (Whole conc. entered as: 5200 mg/kg or 0.48%)

ethylbenzene: (Whole conc. entered as: 0.214 mg/kg or 0.0000197%)

toluene: (Whole conc. entered as: 0.402 mg/kg or 0.0000371%)

xylene: (Whole conc. entered as: 8.78 mg/kg or 0.00081%)

Page 2 of 10 RASMF-9BM5E-Z7P5M www.hazwasteonline.com

anthracene: (Whole conc. entered as: 39.1 mg/kg or 0.00361%) benz[a]anthracene: (Whole conc. entered as: 94.8 mg/kg or 0.00875%)

acenaphthene: (Whole conc. entered as: 48.7 mg/kg or 0.00449%)

benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: 95.4 mg/kg or 0.0088%)

benzo[b]fluoranthene: (Whole conc. entered as: 112 mg/kg or 0.0103%) benzo[ghi]perylene: (Whole conc. entered as: 61.7 mg/kg or 0.00569%) benzo[k]fluoranthene: (Whole conc. entered as: 37.4 mg/kg or 0.00345%) dibenz[a,h]anthracene: (Whole conc. entered as: 13.3 mg/kg or 0.00123%)

chrysene: (Whole conc. entered as: 0.0826 mg/kg or 0.00000762%) fluoranthene: (Whole conc. entered as: 249 mg/kg or 0.023%) fluorene: (Whole conc. entered as: 31.5 mg/kg or 0.00291%) naphthalene: (Whole conc. entered as: 20 mg/kg or 0.00185%) phenanthrene: (Whole conc. entered as: 273 mg/kg or 0.0252%)

pyrene: (Whole conc. entered as: 237 mg/kg or 0.0219%)

Test Settings

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this test to non hazardous because: "not liquid"

Notes utilised in assessment

C14: Step 4

"identify whether any individual ecotoxic substance is given a substance specific concentration limit in Annex VI, Table 3.2 to the CLP....", used on:

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benz[a]anthracene"

C14: Step 5

"identify whether any individual ecotoxic substance is present at or above a cut-off value ...", used on:

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluorene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "copper sulfate (hydrated)"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chromium(III) oxide"

Test: "HP~14~on~R50,~R52,~R53,~R50/53,~R51/53,~R52/53"~for~determinand: "cadmium~sulfate"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "arsenic trioxide"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel sulfate"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "zinc sulphate"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "anthracene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "acenaphthene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]pyrene; benzo[def]chrysene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[b]fluoranthene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzolghilperylene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[k]fluoranthene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "dibenz[a,h]anthracene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chrysene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "naphthalene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "pyrene"

Note 1, used on:

Test: "HP 5 on STOT SE 2; H371, STOT RE 2; H373" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 6 on Acute Tox. 4; H302" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 6 on Acute Tox. 4; H332" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 7 on Carc. 2; H351" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 10 on Repr. 1A; H360, Repr. 1B; H360F, Repr. 1A; H360F, Repr. 1A; H360F, Repr. 1A; H360D, Repr. 1B; H360D, Repr. 1B; H360FD, Repr. 1A; H360FD, Repr. 1A; H360Fd, Repr. 1B; H360Fd, Repr. 1B; H360Df, Repr. 1A; H360Df, Rep

Test: "HP 10 on Repr. 2; H361, Repr. 2; H361f, Repr. 2; H361d, Repr. 2; H361fd" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Determinand notes

Note 1, used on:

determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Note A, used on:

determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Note C , used on:

determinand: "xylene"

WM3: Unknown oil, used on:

determinand: "TPH (C6 to C40) petroleum group"

Classification of sample: SR002

Non Hazardous Waste Classified as 17 05 04 in the European Waste Catalogue

Sample details

Sample Name: SR002

Sample Depth:

0 m

Moisture content: **34%** (dry weight correction)

EWC Code:

Entry:

Chapter: 17: Construction and Demolition Wastes (including

excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in

17 05 03)

Hazard properties

None identified

Determinands (Moisture content: 34%, dry weight correction)

lead compounds (with the exception of those listed separately in this Annex): (Cation conc. entered: 176 mg/kg, converted to compound conc.:198.328 mg/kg or 0.0198%, Note 1 conc.: 0.0131%)

copper sulfate (hydrated): (Cation conc. entered: 44.4 mg/kg, converted to compound conc.:130.187 mg/kg or 0.013%) chromium(III) oxide: (Cation conc. entered: 19.2 mg/kg, converted to compound conc.:20.942 mg/kg or 0.00209%) cadmium sulfate: (Cation conc. entered: 0.372 mg/kg, converted to compound conc.:0.515 mg/kg or 0.0000515%) arsenic trioxide: (Cation conc. entered: 26.3 mg/kg, converted to compound conc.:25.914 mg/kg or 0.00259%) nickel sulfate: (Cation conc. entered: 16.9 mg/kg, converted to compound conc.:33.254 mg/kg or 0.00333%) selenium compounds (with the exception of cadmium sulfoselenide and sodium selenite): (Cation conc. entered: 1.09 mg/kg, converted to compound conc.:1.22 mg/kg or 0.000122%)

zinc sulphate: (Cation conc. entered: 148 mg/kg, converted to compound conc.:272.728 mg/kg or 0.0273%)

TPH (C6 to C40) petroleum group: (Whole conc. entered as: 136 mg/kg or 0.0101%)

anthracene: (Whole conc. entered as: 0.958 mg/kg or 0.0000715%)

benz[a]anthracene: (Whole conc. entered as: 5.38 mg/kg or 0.000401%)

acenaphthene: (Whole conc. entered as: 0.236 mg/kg or 0.0000176%)

acenaphthylene: (Whole conc. entered as: 0.102 mg/kg or 0.00000761%)

benzo[a]pyrene; benzo[def]chrysene: (Whole conc. entered as: 4.65 mg/kg or 0.000347%)

benzo[b]fluoranthene: (Whole conc. entered as: 5.85 mg/kg or 0.000437%) benzo[ghi]perylene: (Whole conc. entered as: 2.39 mg/kg or 0.000178%)

benzo[k]fluoranthene: (Whole conc. entered as: 1.98 mg/kg or 0.000148%)

dibenz[a,h]anthracene: (Whole conc. entered as: 0.621 mg/kg or 0.0000463%)

albertz[a,ft]arithracerie. (whole conc. entered as. 0.021 ftig/kg of 0.0000

chrysene: (Whole conc. entered as: 0.0756 mg/kg or 0.00000564%) fluoranthene: (Whole conc. entered as: 10.1 mg/kg or 0.000754%)

fluorene: (Whole conc. entered as: 0.214 mg/kg or 0.000016%)

naphthalene: (Whole conc. entered as: 0.336 mg/kg or 0.0000251%)

phenanthrene: (Whole conc. entered as: 2.35 mg/kg or 0.000175%)

pyrene: (Whole conc. entered as: 8.68 mg/kg or 0.000648%)

Test Settings

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this test to non hazardous because: "not liquid"

Notes utilised in assessment

C14: Step 5

"identify whether any individual ecotoxic substance is present at or above a cut-off value ...", used on:

www.hazwasteonline.com RASMF-9BM5E-Z7P5M Page 5 of 10


```
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluorene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "lead compounds (with the exception of
those listed separately in this Annex)"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "copper sulfate (hydrated)"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chromium(III) oxide"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "cadmium sulfate"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "arsenic trioxide"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "nickel sulfate"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "selenium compounds (with the exception
of cadmium sulfoselenide and sodium selenite)"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "zinc sulphate"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benz[a]anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "acenaphthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[a]pyrene; benzo[def]chrysene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[b]fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[ghi]perylene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "benzo[k]fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "dibenz[a,h]anthracene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "chrysene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "fluoranthene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "naphthalene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "phenanthrene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "pyrene"
Test: "HP 14 on R50, R52, R53, R50/53, R51/53, R52/53" for determinand: "TPH (C6 to C40) petroleum group"
```

Determinand notes

Note 1, used on:

determinand: "lead compounds (with the exception of those listed separately in this Annex)"

Note A, used on:

determinand: "lead compounds (with the exception of those listed separately in this Annex)" determinand: "selenium compounds (with the exception of cadmium sulfoselenide and sodium selenite)"

WM3: Unknown oil, used on:

determinand: "TPH (C6 to C40) petroleum group"

Page 6 of 10 RASMF-9BM5E-Z7P5M www.hazwasteonline.com

Appendix A: Classifier defined and non CLP determinands

chromium(III) oxide (CAS Number: 1308-38-9)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source: http://clp-

inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=33806&HarmOnly=no?fc=true&lang=en

Data source date: 26/11/2012

Risk Phrases: R20, R22, R36, R37, R38, R42, R43, R60, R61, R50/53

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 4; H332, Skin Irrit. 2; H315, Eye Irrit. 2; H319, Resp. Sens. 1; H334,

Skin Sens. 1; H317, Repr. 1B; H360FD, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

TPH (C6 to C40) petroleum group

Comments: Risk phrase data given on page A41

Data source: WM2 3rd edition, 2013 Data source date: 01/08/2013

Risk Phrases: R10, R45, R46, R63, R65, R51/53

Hazard Statements: Flam. Liq. 3; H226, Muta. 1B; H340, Carc. 1B; H350, Repr. 2; H361d, STOT RE 2; H373, Asp. Tox.

1; H304, Aquatic Chronic 2; H411

anthracene (CAS Number: 120-12-7)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=101102&HarmOnly=no

Data source date: 08/03/2013

Risk Phrases: N; R50/53, R36, R37, R38, R43

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, Skin Sens. 1; H317, STOT SE 3; H335, Aquatic Acute 1; H400,

Aquatic Chronic 1; H410

acenaphthene (CAS Number: 83-32-9)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=133563&HarmOnly=no

Data source date: 16/07/2012

Risk Phrases: N; R50/53, N; R51/53, R36, R37, R38

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1;

H410, Aquatic Chronic 2; H411

benzo[ghi]perylene (CAS Number: 191-24-2)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=15793&HarmOnly=no

Data source date: 16/07/2012 Risk Phrases: N; R50/53

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

fluoranthene (CAS Number: 206-44-0)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=56375&HarmOnly=no

Data source date: 16/07/2012

Risk Phrases: N; R50/53, R20, R22, R36

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 4; H332, Eye Irrit. 2; H319, Aquatic Acute 1; H400, Aquatic Chronic

1; H410

fluorene (CAS Number: 86-73-7)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=81845&HarmOnly=no

Data source date: 16/07/2012 Risk Phrases: N: R50/53, R53

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 4; H413

phenanthrene (CAS Number: 85-01-8)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=109754&HarmOnly=no

Data source date: 16/07/2012

Risk Phrases: N; R50/53, R22, R36, R37, R38, R40, R43

Hazard Statements: Acute Tox. 4; H302, Skin Irrit. 2; H315, Eye Irrit. 2; H319, Skin Sens. 1; H317, Carc. 2; H351, STOT

SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (CAS Number: 129-00-0)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=87484&HarmOnly=no

Data source date: 16/07/2012 Risk Phrases: N; R50/53, R23

Hazard Statements: Acute Tox. 3; H331, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

acenaphthylene (CAS Number: 208-96-8)

Comments: Risk phrase data taken from European Chemicals Agency's Classification & Labelling Inventory

Data source:

http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=59285&HarmOnly=no

Data source date: 16/07/2012

Risk Phrases: R22, R26, R27, R36, R37, R38

Hazard Statements: Acute Tox. 1; H310, Acute Tox. 1; H330, Acute Tox. 4; H302, Skin Irrit. 2; H315, Eye Irrit. 2; H319,

STOT SE 3; H335

Appendix B: Notes

C14: Step 4

from section: WM3: C14 in the document: "WM3 - Waste Classification"

"identify whether any individual ecotoxic substance is given a substance specific concentration limit in Annex VI, Table 3.2 to the CLP,..."

C14: Step 5

from section: WM3: C14 in the document: "WM3 - Waste Classification"

"identify whether any individual ecotoxic substance is present at or above a cut-off value ..."

Note 1

from section: 1.1.3.2, Annex VI in the document: "CLP Regulations"

"The concentration stated or, in the absence of such concentrations, the generic concentrations of this Regulation (Table 3.1) or the generic concentrations of Directive 1999/45/EC (Table 3.2), are the percentages by weight of the metallic element calculated with reference to the total weight of the mixture."

Note A

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Without prejudice to Article 17(2), the name of the substance must appear on the label in the form of one of the designations given in Part 3. In Part 3, use is sometimes made of a general description such as '... compounds' or '... salts'. In this case, the supplier is required to state on the label the correct name, due account being taken of section 1.1.1.4."

Note C

from section: 1.1.3.1, Annex VI in the document: "CLP Regulations"

"Some organic substances may be marketed either in a specific isomeric form or as a mixture of several isomers. In this case the supplier must state on the label whether the substance is a specific isomer or a mixture of isomers."

WM3: Unknown oil

from section: Chapter 3: 4. Waste oils and other wastes containing or contaminated with oil in the document: "WM3 - Waste Classification"

"If the identity of the oil is unknown, and the petroleum group cannot be established, then the oil contaminating the waste can be classified as non-carcinogenic due to the presence of oil if all three of the following criteria are met:

Page 8 of 10 RASMF-9BM5E-Z7P5M www.hazwasteonline.com

- the waste contains **benzo[a]pyrene (BaP)** at a concentration of less than 0.01% (1/10,000th) of the TPH concentration (This is the carcinogenic limit specified in table 3.2 of the CLP for BaP)
- this has been determined by an appropriate and representative sampling approach in accordance with the principles set out in Appendix D, and
- the analysis clearly demonstrates, for example by carbon bands or chromatograph, and the laboratory has reasonably concluded that the hydrocarbons present have not arisen from petrol or diesel

Appendix C: Version

Classification utilises the following:

- CLP Regulations Regulation 1272/2008/EC of 16 December 2008
 REGULATION (EC) No 1272/2008 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2008 on
 classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC,
 and amending Regulation (EC) No 1907/2006
- 1st ATP Regulation 790/2009/EC of 10 August 2009
 COMMISSION REGULATION (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 2nd ATP Regulation 286/2011/EC of 10 March 2011
 COMMISSION REGULATION (EU) No 286/2011 of 10 March 2011 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 3rd ATP Regulation 618/2012/EU of 10 July 2012
 COMMISSION REGULATION (EU) No 618/2012 of 10 July 2012 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 4th ATP Regulation 487/2013/EU of 8 May 2013
 COMMISSION REGULATION (EU) No 487/2013 of 8 May 2013 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- Correction to 1st ATP Regulation 758/2013/EU of 7 August 2013
 COMMISSION REGULATION (EU) No 758/2013 of 7 August 2013 correcting Annex VI to Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 5th ATP Regulation 944/2013/EU of 2 October 2013
 COMMISSION REGULATION (EU) No 944/2013 of 2 October 2013 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- 6th ATP Regulation 605/2014/EU of 5 June 2014
 COMMISSION REGULATION (EU) No 605/2014 of 5 June 2014 amending, for the purposes of introducing hazard and precautionary statements in the Croatian language and its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on classification, labelling and packaging of substances and mixtures
- WFD Annex III replacement Regulation 1357/2014/EU of 18 December 2014
 COMMISSION REGULATION (EU) No 1357/2014 of 18 December 2014 replacing Annex III to Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives
- Revised List of Wastes 2014 Decision 2014/955/EU of 18 December 2014
 COMMISSION DECISION of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council (2014/955/EU)
- WM3 Waste Classification May 2015
 Technical Guidance WM3 Guidance on the classification and assessment of waste (1st edition 2015)
- POPs Regulation 2004 Regulation 850/2004/EC of 29 April 2004
 REGULATION (EC) No 850/2004 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 29 April 2004 on persistent organic pollutants and amending Directive 79/117/EEC
- 1st ATP to POPs Regulation Regulation 756/2010/EU of 24 August 2010 COMMISSION REGULATION (EU) No 756/2010 of 24 August 2010 amending Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants as regards Annexes IV and V
- 2nd ATP to POPs Regulation Regulation 757/2010/EU of 24 August 2010
 COMMISSION REGULATION (EU) No 757/2010 of 24 August 2010 amending Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants as regards Annexes I and III

www.hazwasteonline.com RASMF-9BM5E-Z7P5M Page 9 of 10

HazWasteOnline Engine: WM3 1st Edition, May 2015 HazWasteOnline Engine Version: 2015.169.2852.5804 (18 Jun 2015) HazWasteOnline Database: 2015.169.2852.5804 (18 Jun 2015)

Page 10 of 10 RASMF-9BM5E-Z7P5M www.hazwasteonline.com